Journal of Computer Applications ›› 2013, Vol. 33 ›› Issue (07): 1973-1975.DOI: 10.11772/j.issn.1001-9081.2013.07.1973

• Network and distributed techno • Previous Articles     Next Articles

Implementation of gray level error conpensation for optical 4f system

HAN Liang,JIANG Ziqi,PU Xiujuan   

  1. College of Communication Engineering, Chongqing University, Chongqing 400030, China
  • Received:2013-01-07 Revised:2013-02-17 Online:2013-07-06 Published:2013-07-01
  • Contact: HAN Liang

光学4f系统灰度误差补偿的实现

韩亮,姜孜锜,蒲秀娟   

  1. 重庆大学 通信工程学院,重庆 400030
  • 通讯作者: 韩亮
  • 作者简介:韩亮(1975-),男,陕西洛南人,副教授,博士,主要研究方向:图像处理、信息光学;姜孜锜(1988-),女,湖北黄冈人,硕士研究生,主要研究方向:图像处理;蒲秀娟(1979-),女,四川隆昌人,讲师,博士,主要研究方向:非线性估计方法。
  • 基金资助:

    国家自然科学基金资助项目(61171158, 61071190);中央高校基本科研业务费资助项目(CDJZR10160002)

Abstract: To compensate the gray level error in optical 4f system, a method for gray level error compensation based on histogram matching and Radial Basis Function (RBF) neural network was proposed. The nonlinear transformation of histogram between input and output images in optical 4f System was fitted by RBF neural network, then the optimal estimation of curve for histogram matching between input and output images was obtained. The gray level error compensation image was obtained by utilizing histogram matching according to the optimal estimation of curve for histogram matching. The average Peak Signal-to-Noise Ratio (PSNR) gain achieved was 2.96dB and the visual effect of images processed was improved by utilizing the proposed method in actual optical 4f system. The experimental results show the gray level error in optical 4f system can be compensated effectively and the precision of optical information processing was improved by the proposed method.

Key words: optical 4f system, gray level error, Radial Basis Function (RBF) neural network, histogram matching

摘要: 为补偿光学4f系统灰度误差,提出基于直方图匹配和径向基函数(RBF)神经网络的灰度误差补偿方法。首先利用径向基函数神经网络拟合经光学4f系统输出图像的直方图与对应输入图像的直方图之间的非线性变换,得到输出图像与输入图像的直方图匹配变换曲线的最优估计;再依据直方图匹配曲线的最优估计对经光学4f系统的输出图像进行直方图匹配,得到灰度误差补偿后的图像。利用实际的光学4f系统进行光学实验,灰度误差补偿后图像的信噪比平均提高了2.96dB,视觉效果明显改善。实验结果表明,该方法能有效补偿光学4f系统灰度误差,提高基于光学4f系统的光学信息处理的精度。

关键词: 光学4f系统, 灰度误差, 径向基函数神经网络, 直方图匹配

CLC Number: