Journal of Computer Applications ›› 2014, Vol. 34 ›› Issue (9): 2482-2485.DOI: 10.11772/j.issn.1001-9081.2014.09.2482

• Network and communications • Previous Articles     Next Articles

Stackelberg game-based power allocation strategy for cooperative networks

WEI Menghan,QIN Shuang,SUN Sanshan   

  1. School of Physics and Electronic Enineering, Sichuan Normal University, Chengdu Sichuan 610101, China
  • Received:2014-03-12 Revised:2014-04-22 Online:2014-09-01 Published:2014-09-30
  • Contact: WEI Menghan

基于Stackelberg博弈的协作网络功率分配策略

卫萌菡,秦爽,孙三山   

  1. 四川师范大学 物理与电子工程学院,成都 610101
  • 通讯作者: 卫萌菡
  • 作者简介: 
    卫萌菡(1982-),女,四川成都人,讲师,硕士,主要研究方向:无线资源管理;
    秦爽(1983-),男,四川成都人,讲师,博士,主要研究方向:室内定位;
    孙三山(1983-),男,四川达州人,实验师,博士研究生,主要研究方向:网络通信。
  • 基金资助:

    四川省教育厅基金资助项目

Abstract:

A distributed strategy based on Stackelberg game was proposed to allocate cooperative power for cooperative networks. A Stackelberg game model was built at first, and the source node decided the price according to the cooperative power. Considering the relay's available resources, channel state, location and the price determined by source node, the relay node allocated the cooperative power to construct a user utility function. Then, the utility function was demonstrated to satisfy the conditions of concave function to ensure the existence of equilibrium. Subsequently, each node maximized its utility by finding the Stackelberg Equilibrium (SE) of optimum power and price. Finally, the simulation results proved the existence of equilibrium point, and the node's price, cooperative power and each node's utility were analyzed when the source node was in a different position. In the experiments, the cooperative power and price of the closer user respectively were 1.29 times and 1.37 times of the farther user. The experimental results show that the proposed strategy is effective, and it can be used in cooperative network and some other distributed networks.

摘要:

针对协作网络中的功率分配问题,提出基于Stackelberg博弈的分配策略。首先建立博弈模型,源节点根据中继节点分配的功率给出价格;中继节点根据自身资源情况、信道状态、位置信息以及源节点提出的价格,进行协作传输功率的分配,从而构建用户效用函数;接着证明了该效用函数满足凹函数的条件,且存在均衡点,因此参与决策的用户可以通过求解协作功率和价格的Stackelberg均衡解(SE)最大化自己的效用;最后,通过仿真实验验证了均衡点的存在,并对源节点位置不同情况下节点的价格、功率和效用进行了分析,实验中离中继更近的源节点的协作功率和效用分别是距离较远用户的1.29倍和1.37倍。理论分析与实验结果证明了策略的有效性,而且该策略能适用于协作网络及其他分布式网络。

CLC Number: