[1] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE, 1995, 4:1942-1948. [2] CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1):58-73. [3] KENNEDY J. Bare bones particle swarms[C]//SIS'03:Proceedings of the 2003 IEEE Swarm Intelligence Symposium. Piscataway, NJ:IEEE, 2003:80-87. [4] PAN F, HU X, EBERHART R, et al. An analysis of bare bones particle swarm[C]//SIS'08:Proceedings of the 2008 IEEE Swarm Intelligence Symposium. Piscataway, NJ:IEEE, 2008:1-5. [5] LIU Z H, WEI H L, ZHONG Q C, et al. GPU implementation of DPSO-RE algorithm for parameters identification of surface PMSM considering VSI nonlinearity[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(3):1334-1345. [6] 周红标,乔俊飞.混合多目标骨干粒子群优化算法在污水处理过程优化控制中的应用[J].化工学报,2017,68(9):3511-3521.(ZHOU H B, QIAO J F. Optimal control of wastewater treatment process using hybrid multi-objective barebones particle swarm optimization algorithm[J]. CIESC Journal, 2017, 68(9):3511-3521.) [7] WANG H. Opposition-based barebones particle swarm for constrained nonlinear optimization problems[EB/OL].[2018-01-16]. http://www.univie.ac.at/EMIS/journals/HOA/MPE/Volume2012/761708.pdf. [8] KROHLING R A, MENDEL E. Bare bones particle swarm optimization with Gaussian or Cauchy jumps[C]//CEC'09:Proceedings of the 11th Conference on Congress on Evolutionary Computation. Piscataway, NJ:IEEE, 2009:3285-3291. [9] LIU Z H, WEI H L, LI X H, et al. Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO[EB/OL].[2018-02-04]. http://eprints.whiterose.ac.uk/126906/1/Global%20Identification%20of%20Electrical%20Parameters%20(IEEE-TPEL%20Accepted%202018-01-23).pdf. [10] 张芳芳,王建军,张勇.少控制参数的分层式骨干粒子群优化算法[J].系统工程理论与实践,2015,35(12):3217-3224.(ZHANG F F, WANG J J, ZHANG Y. Layer bare-bones particle swarm optimization algorithm with few control parameters[J]. Systems Engineering-Theory and Practice, 2015, 35(12):3217-3224.) [11] 张震,潘再平,潘晓弘.基于剪枝策略的骨干粒子群算法[J].控制与决策,2015,30(9):1591-1596.(ZHANG Z, PAN Z P, PAN X H. Pruning strategy based bare bones particle swarm optimization[J]. Control and Decision, 2015, 30(9):1591-1596.) [12] KENNEDY J, MENDES R. Neighborhood topologies in fully informed and best-of-neighborhood particle swarms[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2006, 36(4):515-519. [13] JUANG C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2004, 34(2):997-1006. [14] 刘衍民,隋常玲,赵庆祯.基于K-均值聚类的动态多种群粒子群算法及其应用[J].控制与决策,2011,26(7):1019-1025.(LIU Y M, SUI C L, ZHAO Q Z. Dynamic multi-swarm particle swarm optimizer based on K-means clustering and its application[J]. Control and Decision, 2011, 26(7):1019-1025.) [15] 谢红侠,马晓伟,陈晓晓,等.基于多种群的改进粒子群算法多模态优化[J].计算机应用,2016,36(9):2516-2520.(XIE H X, MA X W, CHEN X X, et al. Enhanced multi-species-based particle swarm optimization for multi-modal function[J]. Journal of Computer Applications, 2016, 36(9):2516-2520.) [16] CHEN C H. Cooperative bare bone particle swarm optimization[C]//ICISCE 2012:Proceedings of the 2012 IET International Conference on Information Science and Control Engineering. Stevenage, UK:IET, 2012:2.27-2.27. [17] 申元霞,曾传华,王喜凤,等.并行协作骨干粒子群优化算法[J].电子学报,2016,44(7):1643-1648.(SHEN Y X, ZENG C H, WANG X F, et al. A parallel-cooperative bare-bone particle swarm optimization algorithm[J]. Acta Electronica Sinica, 2016, 44(7):1643-1648.) [18] GIROLAMI M. Mercer kernel-based clustering in feature space[J]. IEEE Transactions on Neural Networks, 2002, 13(3):780-784. [19] 盛万兴,季宇,吴鸣,等.基于改进模糊C均值聚类算法的区域集中式光伏发电系统动态分群建模[J].电网技术,2017,41(10):3284-3291.(SHENG W X, JI Y, WU M, et al. Dynamic clustering modeling of regional centralized photovoltaic power plant based on improved fuzzy C-means clustering algorithm[J]. Power System Technology, 2017, 41(10):3284-3291.) [20] 刘立峰,孙赞东,韩剑发,等.量子粒子群模糊神经网络碳酸盐岩流体识别方法研究[J].地球物理学报,2014,57(3):991-1000.(LIU L F, SUN Z D, HAN J F, et al. A carbonate fluid identification method based on quantum particle swarm fuzzy neural network[J]. Chinese Journal of Geophysics, 2014, 57(3):991-1000.) [21] BRITS R, ENGELBRECHT A P, van den BERGH F. A niching particle swarm optimizer[EB/OL].[2018-02-05]. http://pdfs.semanticscholar.org/7cd3/4dce1b828e41e6f0a1485ac1ce1860228499.pdf. |