[1] FU C, CHIN K S. Robust evidential reasoning approach with unknown attribute weights[J]. Knowledge-Based Systems, 2014, 59(2):9-20. [2] 陈圣群, 王应明, 施海柳.多属性匹配决策的等级置信度融合法[J]. 系统工程学报, 2015, 30(1):25-33. (CHEN S Q, WANG Y M, SHI H L. Rank belief degrees fusion method for multi-arrtibute matching decision-making[J]. Journal of Systems Engineering, 2015, 30(1):25-33.) [3] MAHMUD T, NAMIRUR K, MOHAMMAD R, et al. Evaluation of job offers using the evidential reasoning approach[J]. Global Journal of Computer Science & Technology, 2013, 3(2):34-44. [4] ZHOU Z J, HU C H, XU D L, et al. New model for system behavior prediction based on belief rule based systems[J]. Information Sciences, 2010, 180(24):4834-4864. [5] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. Annals of Mathematical Statistics, 1967, 38(2):325-339. [6] SHAFER G. A Mathematical Theory of Evidence[M]. Princeton:Princeton University Press, 1976:85-150. [7] YANG J B, SINGH M G. An evidential reasoning approach for multiple-attribute decision making with uncertainty[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans, 1994, 24(1):1-18. [8] YANG J B, XU D L. On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans, 2002, 32(3):289-304. [9] WANG Y M, YANG J B. Environmental impact assessment using the evidential reasoning approach[J]. European Journal of Operational Research, 2006, 174(3):1885-1913. [10] JOUSSELME A L, GRENIER D, BOSSÉ É. A new distance between two bodies of evidence[J]. Information Fusion, 2001, 2(2):91-101. [11] 王小艺, 刘载文, 侯朝桢, 等.一种基于最优权重分配的D-S改进算法[J]. 系统工程理论与实践, 2006(11):103-107. (WANG X Y, LIU Z W, HOU C Z, et al. An improved D-S algorithm based on the optimization weight distribution[J]. Systems Engineering-Theory and Practice, 2006(11):103-107.) [12] 陆文星, 梁昌勇, 丁勇.一种基于证据距离的客观权重确定方法[J]. 中国管理科学, 2008, 16(6):95-99. (LU W X, LIANG C Y, DING Y. A method determining the objective weights of experts based on evidence distance[J]. Chinese Journal of Management Science, 2008, 16(6):95-99.) [13] 王坚强. 基于证据推理的信息不完全的多准则排序方法[J]. 系统工程学报, 2006, 21(4):419-423. (WANG J Q. Multi-criteria ranking approach based on evidential reasoning with incomplete certain information[J]. Journal of Systems Engineering, 2006, 21(4):419-423.) [14] 朱建军, 胡宏宇, 刘思峰. 基于证据推理的不完全信息决策方法研究及应用[J]. 运筹与管理, 2012, 21(4):85-90. (ZHU J J, HU H Y, LIU S F. An approach to decision-making with uncertain information based on DS theory[J]. Operations Research and Management Science, 2006, 21(4):419-423.) [15] 尹德进, 王宏力. 基于信息熵与证据推理的不确定多属性决策方法[J]. 计算机应用, 2011, 31(5):1308-1310. (YI D J, WANG H L. Uncertain multiattribute decision making method based on entropy and evidential reasoning approach[J]. Journal of Computer Applications, 2011, 31(5):1308-1310.) [16] BAO T, XIE X, LONG P, et al. MADM method based on prospect theory and evidential reasoning approach with unknown attribute weights under intuitionistic fuzzy environment[J]. Expert Systems with Applications, 2017, 88:305-317. [17] YANG J B. Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties[J]. European Journal of Operational Research, 2001, 131(1):31-61. [18] 郭凯红, 李文立. 基于证据推理的不确定多属性决策方法[J]. 管理工程学报, 2012, 26(2):94-100. (GUO K H, LI W L Evidential reasoning-based approach for multiple attribute decision making problems under uncertainty[J]. Journal of Industrial Engineering and Engineering Management, 2012, 26(2):94-100.) [19] 李浩.准则权重信息不完全的证据推理多属性决策算法[J]. 火力与指挥控制, 2015, 40(1):12-15. (LI H. Evidence reasoning algorithm for multi-criteria decision-making with incomplete attribute weight information[J]. Fire Control & Command Control, 2015, 40(1):12-15.) [20] 傅艳华, 唐加福, 张化光. 基于证据推理的项目投资综合评价与决策方法[J]. 东北大学学报(自然科学版), 2005, 26(9):840-843. (FU Y H, TANG J F, ZHANG H G. Overall evaluation and decision-making based on evidential reasoning for investment projects[J]. Journal of Northeastern University (Natural Science), 2005, 26(9):840-843.) |