[1] LI A, LAN Y, CHEN X, et al. Non-Orthogonal Multiple Access (NOMA) for future downlink radio access of 5G[J]. China Communications, 2015, 12(S1):28-37. [2] DAI L, WANG B, YUAN Y, et al. Non-orthogonal multiple access for 5G:solutions, challenges, opportunities, and future research trends[J]. IEEE Communications Magazine, 2015, 53(9):74-81. [3] DING Z, PENG M, POOR H V. Cooperative non-orthogonal multiple access in 5G systems[J]. IEEE Communications Letters, 2015, 19(8):1462-1465. [4] ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G systems:potentials and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2):721-742. [5] JUNGNICKEL V, MANOLAKIS K, ZIRWAS W, et al. The role of small cells, coordinated multipoint, and massive MIMO in 5G[J]. IEEE Communications Magazine, 2014, 52(5):44-51. [6] SHI L, LI B, CHEN H. Pairing and power allocation for downlink non-orthogonal multiple access systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11):10084-10091. [7] CHEN S, PENG K, JIN H. A suboptimal scheme for uplink NOMA in 5G systems[C]//Proceedings of the 2015 International Wireless Communications and Mobile Computing Conference. Piscataway, NJ:IEEE, 2015:1429-1434. [8] LIU S, ZHANG C, LYU G. User selection and power schedule for downlink Non-Orthogonal Multiple Access (NOMA) system[C]//Proceedings of the 2015 IEEE International Conference on Communication Workshop. Piscataway, NJ:IEEE, 2015:2561-2565. [9] HIGUCHI K, KISHIYAMA Y. Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink[C]//Proceedings of the 2013 IEEE 78th Vehicular Technology Conference. Piscataway, NJ:IEEE, 2013:1-5. [10] KIM B, LIM S, KIM H, et al. Non-orthogonal multiple access in a downlink multiuser beamforming system[C]//Proceedings of the 2013 IEEE Military Communications Conference. Piscataway, NJ:IEEE, 2014:1278-1283. [11] BENJEBBOUR A, LI A, SAITO Y, et al. System-level performance of downlink NOMA for future LTE enhancements[C]//Proceedings of the 2013 IEEE Globecom Workshops. Piscataway, NJ:IEEE, 2014:66-70. [12] BOYD S, VANDENBERGHE L. Convex Optimization[M]. Cambridge:Cambridge University Press, 2004:297-302. [13] RAZAVIYAYN M. Successive convex approximation:analysis and applications[EB/OL].[2018-01-20]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.887.8108&rep=rep1&type=pdf. [14] LOBO M S, VANDENBERGHE L, BOYD S, et al. Applications of second-order cone programming[J]. Linear Algebra & Its Applications, 1998, 284(1/2/3):193-228. [15] TRAN L N, HANIF M F, JUNTTI M. A conic quadratic programming approach to physical layer multicasting for large-scale antenna arrays[J]. IEEE Signal Processing Letters, 2013, 21(1):114-117. [16] GRANT M, BOYD S. CVX:Matlab software for disciplined convex programming, version 2.1[EB/OL].[2018-01-10]. http://cvxr.com/cvx/. [17] 3GPP TS36.300. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal terrestrial Radio Access Network (E-UTRAN)[EB/OL].[2017-12-01]. http://www.3gpp.org/DynaReport/36-series.htm. [18] 3GPP TR36.913(V8.0.0). Requirements for further advancements for E-UTRA (LTE-Advanced)[EB/OL].[2017-12-01]. http://www.3gpp.org/DynaReport/36-series.htm. |