[1] LIU R, ZHOU J, LIU M, et al. A wearable acceleration sensor system for gait recognition[C]//Proceedings of the 20072nd IEEE Conference on Industrial Electronics and Applications. Piscataway, NJ:IEEE, 2007:2654-2659. [2] MUAAZ M, MAYRHOFER R. Accelerometer based gait recognition using adapted Gaussian mixture models[C]//Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media. New York:ACM, 2016:288-291. [3] 万彩艳. 基于智能手机加速度传感器的步态身份识别[D].常州:常州大学,2018:21-35.(WAN C Y. Gait identification based on mobile-phone acceleration sensor[D]. Changzhou:Changzhou University, 2018:21-35.) [4] SUN B, WANG Y, BANDA J. Gait characteristic analysis and identification based on the iPhone's accelerometer and gyrometer[J]. Sensors, 2014, 14(9):17037-17054. [5] 张丽娜.基于加速度传感器的步态特征身份认证[D].沈阳:沈阳工业大学,2014:40-65. (ZHANG L N. Gait feature authentication based on acceleration sensor[D]. Shenyang:Shenyang University of Technology, 2014:40-65.) [6] MUAAZ M, MAYRHOFER R. An analysis of different approaches to gait recognition using cell phone based accelerometers[C]//Proceedings of the 11th International Conference on Advances in Mobile Computing and Multimedia. New York:ACM, 2013:293-300. [7] 王忠民,王科,贺炎.高可信度加权的多分类器融合行为识别模型[J].计算机应用,2016,36(12):3353-3357.(WANG Z M, WANG K, HE Y. Multiple classifier fusion model for activity recognition based on high reliability weighted[J]. Journal of Computer Applications, 2016,36(12):3353-3357.) [8] YUAN Y, WANG C, ZHANG J, et al. An ensemble approach for activity recognition with accelerometer in mobile-phone[C]//Proceedings of the 11th International Conference on Computational Science and Engineering. Washington, DC:IEEE Computer Society, 2014:1469-1474. [9] BAYAT A, POMPLUN M, TRAN D A. A study on human activity recognition using accelerometer data from smartphones[J]. Procedia Computer Science, 2014, 34:450-457. [10] SPRAGER S, JURIC M B. An efficient HOS-based gait authentication of accelerometer data[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(7):1486-1498. [11] LU H, HUANG J, SAHA T, et al. Unobtrusive gait verification for mobile phones[C]//Proceedings of the 2014 ACM International Symposium on Wearable Computers. New York:ACM, 2014:91-98. [12] DERAWI M, BOURS P. Gait and activity recognition using commercial phones[J]. Computers and Security, 2013, 39:137-144. [13] WATANABE Y. Influence of holding smart phone for acceleration-based gait authentication[C]//Proceedings of the 20145th International Conference on Emerging Security Technologies. Washington, DC:IEEE Computer Society, 2014:30-33. [14] HOANG T, CHOI D. Secure and privacy enhanced gait authentication on smart phone[J]. The Scientific World Journal, 2014, 2014:Article ID 438254. [15] PRIMO A, PHOHA V V, KUMAR R, et al. Context-aware active authentication using smartphone accelerometer measurements[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, DC:IEEE Computer Society, 2014:98-105. [16] 钱竞光,宋雅伟,叶强,等.步行动作的生物力学原理及其步态分析[J].南京体育学院学报(自然科学版),2006,5(4):1-7.(QIAN J G, SONG Y W, YE Q, et al. The biomechanics principle of walking and analysis on gaits[J]. Journal of Nanjing Institute of Physical Education (Natural Science), 2006, 5(4):1-7.) [17] 王科.多分类器融合算法在行为识别中的应用研究[D].西安:西安邮电大学,2017:40-61. (WANG K. Application and research of multiple classifier fusion algorithm in activity recognition[D]. Xi'an:Xi'an University of Posts and Telecommunications, 2017:40-61.) [18] 黄莉莉,汤进,孙登第,等.基于多标签ReliefF的特征选择算法[J].计算机应用,2012,32(10):2888-2890.(HUANG L L, TANG J, SUN D D, et al. Feature selection algorithm based on multi-label ReliefF[J]. Journal of Computer Applications, 2012,32(10):2888-2890.) [19] QU J, ZHANG Z, GONG T. A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion[J]. Neurocomputing, 2016, 171(C):837-853. |