Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (1): 8-14.DOI: 10.11772/j.issn.1001-9081.2018071642

• 2018 CCF Annual Conference on Distributed and Parallel Computing Systems (DPCS 2018) • Previous Articles     Next Articles

Task assignment method based on cloud-fog cooperative model

LIU Pengfei, MAO Yingchi, WANG Longbao   

  1. College of Computer and Information, Hohai University, Nanjing Jiangsu 211100, China
  • Received:2018-07-19 Revised:2018-08-11 Online:2019-01-10 Published:2019-01-21
  • Supported by:

    This work is partially supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2016YFC0400910, 2018YFC0407905, 2018YFC0407105), the Fundamental Research Funds for the Central Universities (2017B16814, 2017B20914), the Key Technology Project of China Huaneng Group (HNKJ17-21).

基于云雾协作模型的任务分配方法

刘鹏飞, 毛莺池, 王龙宝   

  1. 河海大学 计算机与信息学院, 南京 211100
  • 通讯作者: 刘鹏飞
  • 作者简介:刘鹏飞(1995-),男,山东滨州人,硕士研究生,主要研究方向:分布式计算与并行处理;毛莺池(1976-),女,上海人,教授,博士,CCF会员,主要研究方向:分布计算与并行处理、分布式数据管理;王龙宝(1977-),男,江苏盐城人,讲师,主要研究方向:智能数据处理。
  • 基金资助:

    “十三五”国家重点研发计划项目(2016YFC0400910,2018YFC0407905,2018YFC0407105);中央高校业务费资助项目(2017B16814,2017B20914);华能集团重点研发项目(HNKJ17-21)。

Abstract:

To realize reasonable allocation and scheduling of mobile user task requests under cloud and fog collaboration, a task assignment algorithm based on cloud-fog collaboration model, named IGA (Improved Genetic Algorithm), was proposed. Firstly, individuals were coded in the way of mixed coding, and initial population was generated randomly. Secondly, the objective function was set as the cost of service providers. Then select, cross, and mutate were used to produce new qualified individuals. Finally, the request type in a chromosome was assigned to the corresponding resource node and iteration counter was updated until the iteration was completed. The simulation results show that compared with traditional cloud model, cloud-frog collaboration model reduces the time delay by nearly 30 seconds, reduces Service Level Objective (SLO) violation rate by nearly 10%, and reduces the cost of service providers.

Key words: cloud computing, fog calculating, task allocation, task scheduling, Genetic Algorithm (GA)

摘要:

针对在云雾协作下实现移动用户任务请求的合理分配与调度的问题,提出了一种基于云雾协作模型的任务分配算法——IGA。首先,采用混合编码的方式对个体进行编码,并采用随机的方式产生初始种群;其次设定服务商的花费作为目标函数;然后进行选择、交叉、变异操作产生出符合条件的新个体;最后,根据染色体中的任务请求类型分配到相应的资源节点上,并更新迭代计数器,直到迭代完成。仿真结果表明,在处理移动用户请求时,与传统的云模型相比,云雾协作模型在时延上降低了近30 s,服务水平目标(SLO)违规率上降低了约10个百分比,在服务提供商花费上亦有所减少。

关键词: 云计算, 雾计算, 任务分配, 任务调度, 遗传算法

CLC Number: