[1] HOWE J. The rise of crowdsourcing[J]. Wired Magazine, 2016, 14(6): 1-4. [2] 芮兰兰, 张攀, 黄豪球, 等. 一种面向众包的基于信誉值的激励机制[J]. 电子与信息学报, 2016, 38(7): 1808-1815. (RUI L L, ZHANG P, HUANG H Q, et al. Reputation-based incentive mechanisms in crowdsourcing[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1808-1815.) [3] 施战, 辛煜, 孙玉娥, 等. 基于用户可靠性的众包系统任务分配机制[J]. 计算机应用, 2017, 37(9): 2449-2453. (SHI Z, XIN Y, SUN Y E, et al. Task allocation mechanism for crowdsourcing system based on reliability of users[J]. Journal of Computer Applications, 2017, 37(9): 2449-2453.) [4] LI Y, YIU M L, XU W J. Oriented online route recommendation for spatial crowdsourcing task workers[C]// Proceedings of the 14th International Conference on Advances in Spatial and Temporal Database. New York: ACM, 2015: 137-156. [5] 童咏听, 袁野, 成雨蓉,等. 时空众包数据管理技术研究综述[J].软件学报, 2017, 28(1): 35-58. (TONG Y X, YUAN Y, CHENG Y R, et al. Survey on spatiotemporal crowdsourced data management techniques[J]. Journal of Software, 2017, 28(1): 35-58.) [6] TONG Y X, SHE J, DING B, et al. Online mobile micro-task allocation in spatial crowdsourcing[C]// Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering, Piscataway, NJ: IEEE, 2016: 49-60. [7] 宋天舒, 童咏昕, 王立斌, 等. 空间众包环境下的3类对象在线任务分配[J]. 软件学报, 2017, 28(3): 611-630. (SONG T S, TONG Y X, WANG L B, et al. Online task assignment for three types of objects under spatial crowdsourcing environment[J]. Journal of Software, 2017, 28(3): 611-630.) [8] 刘辉, 李盛恩. 时空众包环境下基于统计预测的自适应阈值算法[J]. 计算机应用, 2018, 38(2): 415-420. (LIU H, LI S E. Adaptive threshold algorithm based on statistical prediction under spatial crowdsourcing environment[J]. Journal of Computer Applications, 2018, 38(2): 415-420.) [9] LONG C, WONG R C-W, YU P S, et al. On optimal worst-case matching[C]// Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2013: 845-856. [10] TONG Y, SHE J, DING B, et al. Online minimum matching in real-time spatial data: experiments and analysis[J]. Proceedings of the VLDB Endowment, 2016, 9(12): 1053-1064. [11] HASSAN U U, CURRY E. Efficient task assignment for spatial crowdsourcing: a combinatorial fractional optimization approach with semi-bandit learning[J]. Expert Systems with Applications, 2016, 58(C): 36-56. [12] DENG D, SHAHABI C, ZHU L. Task matching and scheduling for multiple workers in spatial crowdsourcing[C]// Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2015: Article No. 21. [13] CHEN Z, FU R, ZHAO Z, et al. gMission: a general spatial crowdsourcing platform[J]. Proceedings of the Very Large Data Base Endowment, 2014, 7(13): 1629-1632. |