[1] ZHANG J, SUN J. Stability analysis of an SIS epidemic model with feedback mechanism on networks[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 394(15): 24-32. [2] LI T, ZHANG F Q, LIU H W, et al. Threshold dynamics of an SIRS model with nonlinear incidence rate and transfer from infectious to susceptible[J]. Applied Mathematics Letters, 2017, 70: 52-57. [3] LIU Q, JIANG D Q, SHI N Z. Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching[J]. Applied Mathematics and Computation, 2018, 316: 310-325. [4] LI T, WANG Y M, GUAN Z H. Spreading dynamics of a SIQRS epidemic model on scale-free networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(3): 686-692. [5] HUANG S Y, CHEN F D, CHEN L J. Global dynamics of a network-based SIQRS epidemic model with demographics and vaccination[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 43: 296-310. [6] WHITE E, COMISKEY C. Heroin epidemics, treatment and ODE modeling[J]. Mathematical Biosciences, 2007, 208:312-324. [7] MULONE G, STRAUHAN B. A note on heroin epidemics[J]. Mathematical Biosciences, 2009, 218(1): 138-141. [8] NYABADZA F, HOVE-MUSEKWA S D. From heroin epidemics to methamphetamine epidemics: modelling substance abuse in a South African province[J]. Mathematical Biosciences, 2010, 225(2): 132-140. [9] BUTLER G, WALTMAN P. Persistence in dynamical systems[J]. Journal of Differential Equations, 1986, 63(2): 255-263. [10] HOFBAUER J, SO J W-H. Uniform persistence and repellors for maps[J]. Proceedings of the American Mathematical Society, 1989, 107(4): 1137-1142. [11] LI Y M, MULDOWNEY J S. A geometric approach to global-stability problems[J]. SIAM Journal on Mathematical Analysis, 1996, 27(4): 1070-1083. [12] LI Y M, MULDOWNEY J S. On R.A.Smith’s autonomous convergence theorem[J]. Rocky Mountain Journal of Mathematics, 1995, 25(1): 365-379. [13] MARTIN R H, JR. Logarithmic norms and projections applied to linear differential systems[J]. Journal of Mathematical Analysis and Applications, 1974, 45: 432-454. [14] CASTILLO-CHAVEZ C, SONG B J. Dynamical models of tuberculosis and their applications[J]. Mathematical Biosciences & Engineering, 2004, 1(2):361-404. |