[1] WANG H, WANG H, YIN H Z, et al. A unified framework for fine-grained opinion mining from online reviews[C]// Proceedings of the 201649th Hawaii International Conference on System Sciences. Piscataway, NJ: IEEE, 2016:1134-1143. [2] TANG D Y, QIN B, FENG X C, et al. Effective LSTMs for target-dependent sentiment classification[J/OL]. arXiv Preprint, 2015, 2015: arXiv:1512.01100(2015-12-03)[2016-09-26]. https://arxiv.org/abs/1512.01100. [3] LIN Y M, JIANG X X, LI Y, et al. Collective extraction for opinion targets and opinion words from online reviews[C]// Proceedings of the 20167th International Conference on Cloud Computing and Big Data. Washington, DC: IEEE Computer Society, 2017: 3949-3958. [4] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. New York: Curran Associates, 2012:1097-1105. [5] LEASE M, ALONSO O. Crowdsourcing for search evaluation and social-algorithmic search[C]// Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2012:1180. [6] CHANG J C, AMERSHI S, KAMAR E. Revolt: collaborative crowdsourcing for labeling machine learning datasets[C]// Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2017:2334-2346. [7] MITRA T, HUTTO C J, GILBERT E. Comparing person-and process-centric strategies for obtaining quality data on Amazon mechanical turk[C]// Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. New York: ACM, 2015:1345-1354. [8] RAYKAR V C, VIKAS C. Supervised learning from multiple experts: whom to trust when everyone lies a bit[C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009:889-896. [9] DONMEZ, PINAR, CARBONELL J G, et al. Efficiently learning the accuracy of labeling sources for selective sampling[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2009:259-268. [10] XI C, LIN Q H, ZHOU D Y. Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing[C]// Proceedings of the 2013 International Conference on Machine Learning. Cambridge: MIT Press, 2013:64-72. [11] 冯剑红, 李国良, 冯建华. 众包技术研究综述[J]. 计算机学报, 2015, 38(9):1713-1726.(FENG J H, LI G L, FENG J H. A survey on crowdsourcing[J]. Chinese Journal of Computers, 2015, 38(9):1713-1726.) [12] 毛莺池, 穆超, 包威. 空间众包中多类型任务的分配与调度方法[J]. 计算机应用, 2018,38(1):6-12.(MAO Y C,MU C,BAO W. Multi-type task assignment and scheduling oriented to spatial crowdsourcing[J]. Journal of Computer Applications,2018, 38(1):6-12.) [13] 施战, 辛煜, 孙玉娥. 基于用户可靠性的众包系统任务分配机制[J]. 计算机应用, 2017, 37(9):2449-2453.(SHI Z, XIN Y, SUN Y E. Task allocation mechanism for crowdsourcing system based on reliability of users[J]. Journal of Computer Applications, 2017, 37(9):2449-2453.) [14] LIU X, LU M Y, OOI B C, et al. CDAS: a crowdsourcing data analytics system[J]. Proceedings of the VLDB Endowment, 2012, 5(10):1040-1051. [15] OMAR F Z, CHRIS C B. Crowdsourcing translation: professional quality from non-professionals[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2011:1220-1229. [16] JACOB W, PAUL R, WU T F, et al. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise[C]// Proceedings of the 22nd International Conference on Neural Information Processing Systems. New York: Curran Associates, 2009: 2035-2043. [17] SNOW R, CONNOR B O, JURAFSKY D, et al. Cheap and fast — but is it good? evaluating non-expert annotations for natural language tasks[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2008: 254-263. [18] SARMA A D, PARAMESWARAN A, WIDOM J. Towards globally optimal crowdsourcing quality management: the uniform worker setting[C]// Proceedings of the 2016 International Conference on Management of Data. New York: ACM, 2016:47-62. [19] FENG J, LI G, WANG H, et al. Incremental quality inference in crowdsourcing[C]// DASFAA 2014: International Conference on Database Systems for Advanced Applications. Berlin: Springer, 2014:453-467. [20] DEMARTINI G, DIFALLAH D E, MAUROUX P C. ZenCrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking[C]// Proceedings of the 21st International Conference on World Wide Web. New York: ACM, 2012: 469-478. [21] McCALLUM D R, PETERSON J L. Computer-based readability indexes[C]// Proceedings of the ACM'82 Conference. New York: ACM, 1982: 44-48. [22] HU M, LIU B. Mining opinion features in customer reviews[C]// Proceedings of the 19th National Conference on Artifical Intelligence. Menlo Park: AAAI Press, 2004:755-760. |