[1] 宋璐.基于手机定位数据的交通OD分布研究[D].南京:东南大学,2015:44-49.(SONG L. Research of traffic origin-destination distribution based on cell phone data[D]. Nanjing:Southeast University, 2015:44-49.) [2] 戚新洲,马万经.手机信令数据动态OD矩阵提取与时空特征分析[C]//第十三届中国智能交通年会大会论文集.北京:电子工业出版社,2018:141-158.(QI X Z, MA W J. Dynamic origin-destination extraction and spatial-temporal feature analysis based on cell phone data[C]//Proceedings of the 13th Annual Conference of ITS China. Beijing:Publishing House of Electronics Industry, 2018:141-158.) [3] LI Z, YU L, GAO Y, et al. Identifying temporal and spatial characteristics of residents' trips from cellular signaling data:case study of Beijing[J]. Transportation Research Record,2018, 2672(42):81-90. [4] 南海超.利用手机移动话单数据分析城际铁路客运量的方法[J].交通科技,2014(3):167-169,173.(NAN H C. A new method for analyzing the inter-city railway's passenger volume by using the log-file of cell phones[J]. Transportation Science and Technology, 2014(3):167-169, 173.) [5] 李耀辉.基于移动信令数据的用户出行行为研究[D].重庆:重庆邮电大学,2017:25-27.(LI Y H. User travel behavior research based on mobile phone signaling data[D]. Chongqing:Chongqing University of Posts and Telecommunications, 2017:25-27.) [6] 倪玲霖,张帅超,陈喜群.基于手机信令数据的居民出行空间效应[J].浙江大学学报(工学版),2017,51(5):887-895. (NI L L, ZHANG S C, CHEN X Q. Spatial effects of urban travel using cellular signaling data[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(5):887-895.) [7] 丘建栋,林青雅,李强.基于手机信令数据的居住和出行特征分析——以深圳市为例[J].数据挖掘,2018,8(4):162-173.(QIU J D, LIN Q Y, LI Q. Residential and travel characteristics analysis based on mobile phone signaling data-a case in Shenzhen city[J]. Hans Journal of Data Mining, 2018, 8(4):162-173.) [8] 杜亚朋,雒江涛,程克非,等.基于手机信令和导航数据的出行方式识别方法[J].计算机应用研究,2018,35(8):2311-2314.(DU Y P, LUO J T, CHENG K F, et al. Recognition of urban travel method based on cell phone signaling and navigation map data[J]. Application Research of Computers, 2018, 35(8):2311-2314.) [9] 方珊珊,陈艳艳,刘小明,等.基于手机信令数据的快递人员辨识方法[J].北京工业大学学报,2017,43(3):413-421.(FANG S S, CHEN Y Y, LIU X M, et al. Identification of city couriers based on mobile phone data[J]. Journal of Beijing University of Technology, 2017, 43(3):413-421.) [10] GRAELLS-GARRIDO E, CARO D, PARRA D. Inferring modes of transportation using mobile phone data[J]. EPJ Data Science, 2018,7:No.49. [11] KUJALA R, ALEDAVOOD T, SARAMAKI J. Estimation and monitoring of city-to-city travel times using call detail records[J]. EPJ Data Science, 2016, 5:No.6. [12] 赖见辉.基于移动通信定位数据的交通信息提取及分析方法研究[D].北京:北京工业大学,2014:28-32.(LAI J H. Research on data mining and analysis in transportation based on mobile communication location[D]. Beijing:Beijing University of Technology, 2014:28-32.) [13] 龙瀛,张宇,崔承印.利用公交刷卡数据分析北京职住关系和通勤出行[J].地理学报,2012,67(10):1339-1352.(LONG Y, ZHANG Y, CUI C Y. Identifying commuting pattern of Beijing using bus smart card data[J]. Acta Geographica Sinica, 2012, 67(10):1339-1352.) [14] 李燕.基于多因素影响的居民出行方式选择研究[D].大连:大连交通大学,2017:15-21.(LI Y. Study on residents' choice of transportation based on multiple factors[D]. Dalian:Dalian Jiaotong University. 2017:15-21.) [15] LAI J, CHEN Y, ZHANG W, et al. Identification method of residence and employment locations based on cellular phone data[J]. Journal of Networks, 2014, 9(8):2183-2188. |