[1] HOPPE H. Progressive meshes[C]//Proceedings of the 23rd Annual Conference on Graphics and Interactive Techniques. New York:ACM,1996:99-108. [2] BILJECKI F,LEDOUX H,STOTER J. An improved LOD specification for 3D building models[J]. Computers,Environment and Urban Systems,2016,59:25-37. [3] GARLAND M. Quadric-based polygonal surface simplification[D]. Pittsburgh,PA:Carnegie Mellon University,1999:35-82. [4] 周元峰, 张彩明, 贺平. 体积平方度量下的特征保持网格简化方法[J]. 计算机学报,2009,32(2):203-212. (ZHOU Y F, ZHANG C M,HE P. Feature preserving mesh simplification algorithm based on square volume measure[J]. Chinese Journal of Computers,2009,32(2):203-212.) [5] 方惠兰, 王国瑾. 三角网格曲面上离散曲率估算方法的比较与分析[J]. 计算机辅助设计与图形学学报,2005,17(11):2500-2507. (FANG H L,WANG G J. Comparison and analysis of discrete curvatures estimation methods for triangular meshes[J]. Journal of Computer-Aided Design and Computer Graphics,2005,17(11):2500-2507.) [6] 偶春生, 张佑生. 基于特征保持的曲面网格简化[J]. 计算机应用研究,2013,30(10):3162-3164,3168. (OU C S,ZHANG Y S. Mesh simplification method based on preserving shape features[J]. Application Research of Computers,2013,30(10):3162-3164,3168.) [7] MELAX S. A simple,fast and effective polygon reduction algorithm[J]. Game Developer,1998,11:44-49. [8] HOPPE H,DEROSE T,DUCHAMPY T,et al. Mesh optimization[C]//Proceedings of the 20th Annual Conference on Graphics and Interactive Techniques. New York:ACM,1993:19-26. [9] 李红波, 刘昱晟, 吴渝, 等. 基于二次误差度量的大型网格模型简化算法[J]. 计算机工程与设计,2013,34(9):3158-3162.(LI H B,LIU Y S,WU Y,et al. Simplification algorithm for large mesh models based on quadric error metrics[J]. Computer Engineering and Design,2013,34(9):3158-3162.) [10] 刘峻, 范豪, 孙宇, 等. 结合边折叠和局部优化的网格简化算法[J]. 计算机应用,2016,36(2):535-540.(LIU J,FAN H,SUN Y,et al. Mesh simplification algorithm combined with edge collapse and local optimization[J]. Journal of Computer Applications,2016,36(2):535-540.) [11] 黄佳, 温佩芝, 李丽芳, 等. 保持细节特性的局部误差渐进网格简化算法[J]. 计算机应用,2016,36(6):1704-1708.(HUANG J,WEN P Z,LI L F,et al. Local error progressive mesh simplification algorithm for keeping detail features[J]. Journal of Computer Applications,2016, 36(6):1704-1708.) [12] 焦越, 王慧青, 吴煜豪, 等. 结合面积度量和误差校正的网格简化算法[J]. 计算机工程与应用,2019,55(17):221-226.(JIAO Y, WANG H Q,WU Y H,et al. Mesh simplification algorithm combined with area measurement and error correction[J]. Computer Engineering and Applications, 2019, 55(17):221-226.) [13] 段黎明, 杨尚朋, 张霞, 等. 基于遗传算法的三角网格折叠简化[J]. 光学精密工程,2018,26(6):1489-1496.(DUAN L M, YANG S P,ZHANG X,et al. Collapsing simplification of triangular mesh based on genetic algorithm[J]. Optics and Precision Engineering,2018,26(6):1489-1496.) [14] 张德军, 何发智, 田龙, 等. 基于Z线和八叉树的高效Hausdorff距离计算方法[J]. 计算机辅助设计与图形学学报,2018,30(10):1794-1800.(ZHANG D J,HE F Z,TIAN L,et al. Efficient Hausdorff distance calculation algorithm based on Z-order and octree[J]. Journal of Computer-Aided Design and Computer Graphics,2018,30(10):1794-1800.) [15] 朱苗苗, 潘伟杰, 刘翔, 等.基于BP神经网络代理模型的交互式遗传算法[J/OL].计算机工程与应用:1-8.[2019-02-27] http://kns.cnki.net/kcms/detail/11.2127.tp.20190225.1624.006.html. (ZHU M M,(PAN W J,LIU X,et al. The interactive genetic algorithm based on BP neural network and user cognitive surrogate model[J/OL]. Computer Engineering and Applications:1-8.[2019-02-27]. http://kns.cnki.net/kcms/detail/11.2127.tp.20190225.1624.006.html.) [16] 彭育辉, 高诚辉. 基于形状修正的三角网格模型顶点法矢估算方法[J]. 中国图象图形学报,2010,15(1):142-148. (PENG Y H,GAO C H. An improved algorithm for vertex normal computation of triangular meshes based on shape correction[J]. Journal of Image and Graphics,2010,15(1):142-148.) |