[1] 段文秀. 基于入侵野草算法的泊位分配方式研究[D]. 杭州:浙江工业大学,2017:9-31. (DUAN W X. Research on berth allocation based on invasive weed optimization[J]. Hangzhou:Zhejiang University of Technology,2017:9-31.) [2] DULEBENETS M A. A novel memetic algorithm with a deterministic parameter control for efficient berth scheduling at marine container terminals[J]. Maritime Business Review,2017,2(4):302-330. [3] XIANG X,LIU C,MIAO L. A bi-objective robust model for berth allocation scheduling under uncertainty[J]. Transportation Research Part E:Logistics and Transportation Review,2017, 106:294-319. [4] 刘志雄, 李俊, 邵正宇, 等. 拖轮动态调度的混合演化策略算法设计[J]. 计算机工程与设计,2016, 37(2):519-524,529.(LIU Z X,LI J,SHAO Z Y,et al. Design of hybrid evolutionary strategy algorithm of dynamic tugboat scheduling problem[J]. Computer Engineering and Design,2016,37(2):519-524,529.) [5] 王维. 某港口企业拖轮燃油成本控制研究[D]. 北京:北京理工大学,2016:5-9. (WANG W. Study on the control of fuel costs of certain port enterprise tug[J]. Beijing:Beijing Institute of Technology,2016:5-9.) [6] HU Z. Multi-objective genetic algorithm for berth allocation problem considering daytime preference[J]. Computers and Industrial Engineering,2015,89:2-14. [7] 王军, 郭力铭, 杜剑, 等. 基于动态学习的泊位调度方案优化[J]. 交通运输系统工程与信息,2018,18(5):197-203.(WANG J,GUO L M,DU J,et al. Berth scheduling scheme optimization based on dynamic learning[J]. Journal of Transportation Systems Engineering and Information Technology,2018,18(5):197-203.) [8] 王颖. 拖轮与离散泊位的协同调度[D]. 大连:大连海事大学, 2014:16-18. (WANG Y. Research on port tugboat scheduling optimization and simulation[D]. Dalian:Dalian Maritime University, 2014:16-18.) [9] 白洁. 拖轮和泊位的协同调度研究[D]. 大连:大连海事大学, 2013:18-32. (BAI J. Research on tugboat-berth scheduling[D]. Dalian:Dalian Maritime University,2013:18-32.) [10] 杨劼, 高红, 刘涛, 等. 基于改进遗传算法的泊位岸桥协调调度优化[J]. 计算机应用,2016,36(11):3136-3140.(YANG J, GAO H,LIU T,et al. Integrated berth and quay-crane scheduling based on improved genetic algorithm[J]. Journal of Computer Applications,2016,36(11):3136-3140.) [11] 曲志坚, 陈宇航, 李盘靖, 等. 基于多算子协同进化的自适应并行量子遗传算法[J]. 电子学报,2019,47(2):266-273.(QU Z J,CHEN Y H,LI P J,et al. Cooperative evolution of multiple operators based adaptive parallel quantum genetic algorithm[J]. Acta Electronica Sinica,2019,47(2):266-273.) [12] SERVRANCKX T,VANHOUCKE M. A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs[J]. European Journal of Operational Research, 2019,273(3):841-860. [13] 李昆仑, 关立伟. 实数编码量子共生演算法及其在云任务调度中的应用[J]. 计算机应用研究,2019,36(3):786-791. (LI K L,GUAN L W. Real-coded quantum SOS algorithm and its application in cloud task scheduling[J]. Application Research of Computers,2019,36(3):786-791.) [14] ALAM T,RAZA Z. Quantum genetic algorithm based scheduler for batch of precedence constrained jobs on heterogeneous computing systems[J]. The Journal of Systems and Software,2018,135:126-142. [15] XIONG H,WU Z,FAN H,et al. Quantum rotation gate in quantum-inspired evolutionary algorithm:a review,analysis and comparison study[J]. Swarm and Evolutionary Computation,2018, 42:43-57. |