1 白丽赟,胡学敏,宋昇,等.基于深度级联神经网络的自动驾驶运动规划模型[J].计算机应用,2019,39(10):78-84. BAIL Y, HUX M, SONGS, et al. Motion planning model based on deep cascaded neural networks for autonomous driving [J]. Journal of Computer Applications, 2019, 39(10):78-84. 2 陈淑環,韦玉科,徐乐,等.基于深度学习的图像风格迁移研究综述[J].计算机应用研究,2019,36(8):2250-2255. CHENS H, WEIY K, XUL, et al. Survey of image style transfer based on deep learning [J]. Application Research of Computers, 2019, 36(8): 2250-2255. 3 EFROSA A, FREEMANW T. Image quilting for texture synthesis and transfer [C]// Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2001: 341-346. 4 HERTZMANNA, JACOBSC E, OLIVERN, et al. Image analogies [C]// Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2001: 327-340. 5 GATYSL A, ECKERA S, BETHGEM. Texture synthesis using convolutional neural networks [EB/OL]. (2015-11-09) [2019-05-11]. https:/ /arxiv.org / pdf/1505.07376.pdf. 6 LUANF J, PARISS, SHECHTMANE, et al. Deep photo style transfer [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2017: 6997-7005. 7 ISOLAP, ZHUJ Y, ZHOUT, et al. Image-to-image translation with conditional adversarial networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2017: 1125-1134. 8 WANGC, XUC, WANGC, et al. Perceptual adversarial networks for image-to-image transformation [J]. IEEE Transactions on Image Processing, 2018, 27(8): 4066-4079. 9 ZHUJ Y, PARKT, ISOLAP, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington DC: IEEE Computer Society,2017: 2223-2232. 10 YIZ, ZHANGH, TANP, et al. DualGAN: unsupervised dual learning for image-to-image translation [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2017: 2849-2857. 11 KIMT, CHA M, KIMH, et al. Learning to discover cross-domain relations with generative adversarial networks [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR. org, 2017, 70: 1857-1865. 12 DOSOVITSKIYA, ROS G, CODEVILLAF, et al. CARLA: an open urban driving simulator [EB/OL]. (2017-11-10) [2019-06-08]. https://arxiv.org/pdf/ 1711.03938. pdf. 13 CORDTSM, OMRANM, RAMOSS, et al. The cityscapes dataset for semantic urban scene understanding [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2016: 3213-3223. 14 ZHUX, XIONGY, DAIJ, et al. Deep feature flow for video recognition [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2017: 2349-2358. 15 HEK, ZHANGX, RENS, et al. Identity mappings in deep residual networks [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9908. Cham: Springer, 2016: 630-645. 16 CHENL C, PAPANDREOUG, KOKKINOSI, et al. DeepLAB: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. 17 ILG E, MAYER N, SAIKIA T, et al. FlowNet 2.0: Evolution of optical flow estimation with deep networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society ,2017: 2462-2470. 18 陈文兵,管正雄,陈允杰.基于条件生成式对抗网络的数据增强方法[J].计算机应用,2018,38(11):3305-3311. CHENW B, GUANZ X, CHENY J. Data augmentation method based on conditional generative adversarial net model [J]. Journal of Computer Applications, 2018, 38(11): 3305-3311. 19 OHNISHIK, YAMAMOTOS, USHIKUY, et al. Hierarchical video generation from orthogonal information: optical flow and texture [C]// Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2018: 2387-2394. 20 WANGT C, LIUM Y, ZHUJ Y, et al. Video-to-video synthesis [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Lake Tahoe,Nevada: Curran Associates Inc., 2018: 1152-1164. |