[1] 于莹莹, 陈燕, 李桃迎. 改进的遗传算法求解旅行商问题[J]. 控制与决策,2014,29(8):1483-1488. (YU Y Y,CHEN Y,LI T Y. Improved genetic algorithm for solving TSP[J]. Control and Decision,2014,29(8):1483-1488.) [2] 何庆, 吴意乐, 徐同伟. 改进遗传模拟退火算法在TSP优化中的应用[J]. 控制与决策,2018,33(2):219-225. (HE Q,WU Y L, XU T W. Application of improved genetic simulated annealing algorithm in TSP optimization[J]. Control and Decision,2018,33(2):219-225.) [3] 胡云清. 求解VRP的混沌模拟退火萤火虫算法[J]. 包装工程, 2017,38(7):216-221. (HU Y Q. A chaotic simulated annealing glowworm algorithm for solving VRP problem[J]. Packaging Engineering,2017,38(7):216-221.) [4] 周永权, 黄正新. 求解TSP的人工萤火虫群优化算法[J]. 控制与决策,2012,27(12):1816-1821. (ZHOU Y Q,HUANG Z X. Artificial glowworm swarm optimization algorithm for solving TSP[J]. Control and Decision,2012,27(12):1816-1821.) [5] 吴新杰, 王静文, 黄国兴, 等. 一种求解旅行商问题的改进蛙跳算法[J]. 小型微型计算系统,2015,36(5):1078-1081. (WU X J,WANG J W,HUANG G X,et al. Improved shuffled frog leaping algorithm for solving the traveling salesman problems[J]. Journal of Chinese Computer Systems,2015,36(5):1078-1081.) [6] 王艳, 王秋萍, 王晓峰. 基于改进萤火虫算法求解旅行商问题[J]. 计算机系统应用,2018,27(8):219-225. (WANG Y, WANG Q P,WANG X F. Solving travel salesman problem based on improved firefly algorithm[J]. Computer Systems and Applications,2018,27(8):219-225.) [7] 蔡延光, 陈厚仁, 戚远航. 混沌烟花算法求解旅行商问题[J]. 计算机科学,2019,46(6A):85-88. (CAI Y G,CHEN H R,QI Y H. Chaotic fireworks algorithm for solving travelling salesman problem[J]. Computer Science,2019,46(6A):85-88.) [8] 冯志雨, 游晓明, 刘升. 分层递进的改进聚类蚁群算法解决TSP[J]. 计算机科学与探索,2019,13(8):1280-1294. (FENG Z Y, YOU X M,LIU S. Hierarchical progressive improved ant colony clustering algorithm to solve TSP problem[J]. Journal of Frontiers of Computer Science and Technology,2019,13(8):1280-1294.) [9] 饶卫振, 王新华, 金淳, 等. 一类求解TSP构建型算法的通用改进策略[J]. 中国科学:信息科学,2015,45(8):1060-1079.(RAO W Z,WANG X H,JIN C,et al. On the universal strategy for improving a certain type of construction heuristic for the traveling salesman problem[J]. SCIENTIA SINICA Informationis,2015,45(8):1060-1079.) [10] 许凯波, 鲁海燕, 程毕芸, 等. 求解TSP的改进信息素二次更新与局部优化蚁群算法[J]. 计算机应用, 2017,37(6):1686-1691.(XU K B,LU H Y,CHENG B Y,et al. Ant colony optimization algorithm based on improved pheromones double updating and local optimization for solving TSP[J]. Journal of Computer Applications,2017,37(6):1686-1691.) [11] 程毕芸, 鲁海燕, 徐向平, 等. 求解旅行商问题的该进局部搜索混沌离散粒子群优化算法[J]. 计算机应用,2016,36(1):138-142, 149.(CHENG B Y,LU H Y,XU X P,et al. Improved localsearch-based chaotic discrete particle swarm optimization algorithm for solving traveling salesman problem[J]. Journal of Computer Applications,2016,36(1):138-142,149.) [12] 程毕芸, 鲁海燕, 黄洋, 等. 求解TSP的自适应优秀系数粒子群优化算法[J]. 计算机应用,2017,37(3):750-754,781. (CHENG B Y,LU H Y,HUANG Y,et al. Particle swarm optimization algorithm based on self-adaptive excellence coefficients for solving traveling salesman problem[J]. Journal of Computer Applications,2017,37(3):750-754,781.) [13] 李擎, 张超, 陈鹏, 等. 一种基于粒子群参数优化的改进蚁群算法[J]. 控制与决策,2013,28(6):873-878.(LI Q,ZHANG C, CHEN P,et al. Improved ant colony optimization algorithm based on particle swarm optimization[J]. Control and Decision,2013, 28(6):873-878.) [14] WHITLEY D,HAINS D,HOWE A. A hybrid genetic algorithm for the traveling salesman problem using generalized partition crossover[C]//Proceedings of the 2010 International Conference on Parallel Problem Solving from Nature,LNCS 6238. Berlin:Springer,2010:566-575. [15] MARINAKI M,MARINAKIS Y. A glowworm swarm optimization algorithm for the vehicle routing problem with stochastic demands[J]. Expert Systems with Applications,2016,46:145-163. |