[1] SOCHER R, PENNINGTON J, HUANG E H, et al. Semisupervised recursive autoencoders for predicting sentiment distributions[C]//Proceedings of the 2011 Conference on empirical methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2011:151-161. [2] SOCHER R,PERELYGIN A,WU J,et al. Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2013:1631-1642. [3] MIKOLOV T. Statistical language models based on neural networks[D]. Brno:Brno University of Technology,2012:47-61. [4] TAI K S, SOCHER R, MANNING C D. Improved semantic representations from tree-structured long short-term memory networks[EB/OL].[2019-09-07]. https://arxiv.org/pdf/1503.00075.pdf. [5] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[EB/OL].[2019-09-07]. https://arxiv.org/pdf/1404.2188.pdf. [6] KIM Y. Convolutional neural networks for sentence classification[EB/OL].[2019-09-13]. https://arxiv.org/pdf/1408.5882.pdf. [7] 刘书齐, 王以松, 陈攀峰. 基于CNN-ATTBiLSTM的文本情感分析[J]. 贵州大学学报(自然科学版),2019,36(2):85-89.(LIU S Q,WANG Y S,CHEN P F. A CNN-ATTBiLSTM model neural network for text sentiment analysis[J]. Journal of Guizhou University(Natural Sciences),2019,36(2):85-89.) [8] 王丽亚, 刘昌辉, 蔡敦波, 等. 基于CNN-BiLSTM网络引入注意力模型的文本情感分析[J]. 武汉工程大学学报,2019,41(4):386-391.(WANG L Y,LIU C H,CAI D B,et al. Text sentiment analysis based on CNN-BiLSTM network and attention model[J]. Journal of Wuhan Institute of Technology,2019,41(4):386-391.) [9] ZHANG B,XU X,LI X,et al. Sentiment analysis through critic learning for optimizing convolutional neural networks with rules[J]. Neurocomputing,2019,356:21-30. [10] YIN W,SCHÜTZE H,XIANG B,et al. ABCNN:attention-based convolutional neural network for modeling sentence pairs[J]. Transactions of the Association for Computational Linguistics, 2016,4:259-272. [11] ZHOU P,SHI W,TIAN J,et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2016:207-212. [12] 杨开漠, 吴明芬, 陈涛. 广义文本情感分析综述[J]. 计算机应用,2019,39(S2):6-14.(YANG K M,WU M F,CHEN T. Generalized text sentiment analysis review[J]. Journal of Computer Applications,2019,39(S2):6-14.) [13] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [14] 蔡国永, 林强, 任凯琪. 基于域对抗网络和BERT的跨领域文本情感分析[J]. 山东大学学报(工学版),2020,50(1):1-7,20. (CAI G Y,LIN Q,REN K Q. Cross-domain text sentiment classification based on domain-adversarial network and BERT[J]. Journal of Shandong University(Engineering Science),2020,50(1):1-7,20.) [15] KIRITCHENKO S,ZHU X,CHERRY C,et al. NRC-Canada-2014:detecting aspects and sentiment in customer reviews[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg, PA:Association for Computational Linguistics,2014:437-442. [16] 林江豪, 顾也力, 周咏梅, 等. 基于表情符号的情感词典的构建研究[J]. 计算机技术与发展,2019,29(6):181-185.(LIN J H,GU Y L,ZHOU Y M,et al. Research on building sentiment lexicon based on emoticons[J]. Computer Technology and Development,2019,29(6):181-185.) [17] QIAN Q,HUANG M,LEI J,et al. Linguistically regularized LSTM for sentiment classification[EB/OL].[2019-08-18]. https://arxiv.org/pdf/1611.03949.pdf. [18] VO D T,ZHANG Y. Don't count,predict! an automatic approach to learning sentiment lexicons for short text[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2016:219-224. [19] WANG Y,HUANG M,ZHU X,et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2016:606-615. [20] WANG Y,SUN A,HAN J,et al. Sentiment analysis by capsules[C]//Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva,CHE:International World Wide Web Conferences Steering Committee,2018:1165-1174. [21] SABOUR S,FROSST N,HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:3856-3866. [22] PANG B,LEE L. Movie review data[EB/OL].[2019-10-08]. https://www.cs.cornell.edu/people/pabo/movie-review-data/. [23] WANG J,YU L C,LAI K R,et al. Dimensional sentiment analysis using a regional CNN-LSTM model[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2016:225-230. [24] CHEN T,XU R,HE Y,et al. Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN[J]. Expert Systems with Applications,2017,72:221-230. [25] HU Z,MA X,LIU Z,et al. Harnessing deep neural networks with logic rules[EB/OL].[2019-09-25]. https://arxiv.org/pdf/1603.06318.pdf. [26] LI S,ZHAO Z,LIU T,et al. Initializing convolutional filters with semantic features for text classification[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2017:1884-1889. |