[1] CHO E,MYERS S A,LESKOVEC J. Friendship and mobility:user movement in location-based social networks[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2011:1082-1090. [2] LIAN D,XIE X,ZHENG V W,et al. CEPR:a collaborative exploration and periodically returning model for location prediction[J]. ACM Transactions on Intelligent Systems and Technology, 2015,6(1):No. 8. [3] YE J,ZHU Z,CHENG H. What's your next move:user activity prediction in location-based social networks[C]//Proceedings of the 2013 Society for Industrial and Applied Mathematics International Conference on Data Mining. Philadelphia, PA:SIAM, 2013:171-179. [4] WANG Y,YUAN N J,LIAN D,et al. Regularity and conformity:location prediction using heterogeneous mobility data[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2015:1275-1284. [5] YUAN N J,ZHENG Y,XIE X,et al. Discovering urban functional zones using latent activity trajectories[J]. IEEE Transactions on Knowledge and Data Engineering,2015,27(3):712-725. [6] PAN G,QI G,WU Z,et al. Land-use classification using taxi GPS traces[J]. IEEE Transactions on Intelligent Transportation Systems,2013,14(1):113-123. [7] CHENG C,YANG H,LYU M R,et al. Where you like to go next:successive point-of-interest recommendation[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2013:2605-2611. [8] ZHANG J D,CHOW C Y. Spatiotemporal sequential influence modeling for location recommendations:a gravity-based approach[J]. ACM Transactions on Intelligent Systems and Technology, 2015,7(1):No. 11. [9] ZAREZADE A,JAFARZADEH S,RABIEE H R. Spatio-temporal modeling of users'check-ins in location-based social networks[EB/OL].[2019-12-22]. https://arxiv.org/pdf/1611.07710.pdf. [10] LI Z,WANG J,HAN J. Mining event periodicity from incomplete observations[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2012:444-452. [11] RIZWAN M, WAN W, GWIAZDZINSKI L. Visualization, spatiotemporal patterns,and directional analysis of urban activities using geolocation data extracted from LBSN[J]. ISPRS International Journal of Geo-Information,2020,9(2):No. 137. [12] RIZWAN M,WAN W,CERVANTES O,et al. Using locationbased social media data to observe check-in behavior and gender difference:bringing Weibo data into play[J]. ISPRS International Journal of Geo-Information,2018,7(5):No. 196. [13] YING J J C,LEE W C,WENG T C,et al. Semantic trajectory mining for location prediction[C]//Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM,2011:34-43. [14] CHEN C C,KUO C H,PENG W C. Mining spatial-temporal semantic trajectory patterns from raw trajectories[C]//Proceedings of the 2015 IEEE International Conference on Data Mining Workshop. Piscataway:IEEE,2015:1019-1024. [15] REDONDO R P D,GARCIA-RUBIO C,VILAS A F,et al. A hybrid analysis of LBSN data to early detect anomalies in crowd dynamics[J]. Future Generation Computer Systems,2020,109:83-94. [16] CAO K, GUO J, MENG G, et al. Points-of-interest recommendation algorithm based on LBSN in edgecomputing environment[J]. IEEE Access,2020,8:47973-47983. [17] ZHONG H,LYU H,ZHANG S,et al. Measuring user similarity using check-ins from LBSN:a mobile recommendation approach for e-commerce and security services[J]. Enterprise Information Systems,2020,14(3):368-387. [18] SAKKARI M,ALGARNI A D,ZAIED M. Urban crowd detection using SOM, DBSCAN and LBSN data entropy:a Twitter experiment in New York and Madrid[J]. Electronics,2019,8(6):No. 692. [19] COELHO DA SILVA T L,ZEITOUNI K,DE MACÊDO J A F,et al. A framework for online mobility pattern discovery from trajectory data streams[C]//Proceedings of the 17th IEEE International Conference on Mobile Data Management. Piscataway:IEEE,2016:365-368. [20] LIAO D,ZHONG Y,LI J. Location prediction through activity purpose:integrating temporal and sequential models[C]//Proceedings of the 2017 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 10234. Cham:Springer, 2017:711-723. [21] LV M,CHEN L,XU Z,et al. The discovery of personally semantic places based on trajectory data mining[J]. Neurocomputing,2016,173(Pt 3):1142-1153. [22] 邓尧, 冀汶莉, 李勇军, 等. 基于LBSN用户生成短文本的细粒度位置推测技术[J]. 计算机科学,2019,46(10):316-321. (DENG Y,JI W L,LI Y J,et al. Fine-grained geolocalisation of user generated short text based on LBSN[J]. Computer Science, 2019,46(10):316-321.) [23] FU C,MCKENZIE G,FRIAS-MARTINEZ V,et al. Identifying spatiotemporal urban activities through linguistic signatures[J]. Computers,Environment and Urban Systems,2018,72:25-37. [24] CHEN T, GUESTRIN C. XGBoost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2016:785-794. [25] YANG D,ZHANG D,ZHENG V W,et al. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems,2015,45(1):129-142. [26] 廖东亮. 基于语义时空数据的人类移动性预测[D]. 合肥:中国科学技术大学,2019:13-93.(LIAO D L. Human mobility prediction based on semantics spatial temporal data[J]. Hefei:University of Science and Technology of China,2019:13-93.) [27] 陆锋, 刘康, 陈洁. 大数据时代的人类移动性研究[J]. 地球信息科学学报,2014,16(5):665-672.(LU F,LIU K,CHEN J. Research on human mobility in big data era[J]. Journal of GeoInformation Science,2014,16(5):665-672.) [28] 姚迪, 张超, 黄建辉, 等. 时空数据语义理解:技术与应用[J]. 软件学报,2018,29(7):2018-2045.(YAO D,ZHANG C, HUANG J H,et al. Semantic understanding of spatio-temporal data:technology and application[J]. Journal of Software,2018, 29(7):2018-2045.) [29] 李德仁. 论时空大数据的智能处理与服务[J]. 地球信息科学学报,2019,21(12):1825-1831.(LI D R. The intelligent processing and service of spatiotemporal big data[J]. Journal of Geo-Information Science,2019,21(12):1825-1831.) |