Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (2): 571-576.DOI: 10.11772/j.issn.1001-9081.2020050758

Special Issue: 前沿与综合应用

• Frontier and comprehensive applications • Previous Articles     Next Articles

Macroscopic fundamental diagram traffic signal control model based on hierarchical control

WANG Peng, LI Yanwen, YANG Di, YANG Huamin   

  1. College of Computer Science and Technology, Changchun University of Science and Technology, Changchun Jilin 130022, China
  • Received:2020-06-05 Revised:2020-08-21 Online:2021-02-10 Published:2020-10-20
  • Supported by:
    This work is partially supported by the Technology Research Project of Jilin Science and Technology Development Plan (20190302118GX).

基于层级控制的宏观基本图交通信号控制模型

王鹏, 李艳雯, 杨迪, 杨华民   

  1. 长春理工大学 计算机科学与技术学院, 长春 130022
  • 通讯作者: 杨迪
  • 作者简介:王鹏(1974-),男,内蒙古包头人,教授,博士,CCF会员,主要方向:数据库与数据挖掘;李艳雯(1994-),女,黑龙江牡丹江人,硕士研究生,主要研究方向:数据库与数据挖掘;杨迪(1990-),女,吉林松原人,讲师,博士,主要研究方向:智能交通系统;杨华民(1963-),男,吉林长春人,教授,博士,主要研究方向:数据库与数据挖掘、计算机仿真与虚拟现实、人工智能。
  • 基金资助:
    吉林省科技发展计划技术攻关项目(20190302118GX)。

Abstract: Aiming at the problem of coordinated control within urban traffic sub-areas and boundary intersections, a traffic signal control model based on Hierarchical multi-granularity and Macroscopic Fundamental Diagram (HDMF) was proposed. First, the hierarchical multi-granularity characteristic of the urban traffic system and the rough set theory were used to describe the real-time states of the traffic elements. Then, combined with the distributed intersection signal control based on backpressure algorithm and the dynamic characteristics of the traffic elements, the pressures of the intersection phases were calculated and the phase decision was made. Finally, Macroscopic Fundamental Diagram (MFD) was used to achieve the maximum total flow of vehicles driving out of the area and the optimal number of vehicles in each sub-area. Experimental results showed that HDMF model had the average queue length reduced by 6.35% and 10.01% respectively, and had the average travel time reduced by 6.55% and 11.15% respectively compared with EMP (Extended cooperative Max-Pressure control) model and HGA model based on MFD and hybrid genetic simulated annealing algorithm. It can be seen that the propsed HDMF model can effectively relieve interior and boundary traffic congestions of sub-areas and maximize the traffic flow of the whole road network.

Key words: traffic signal control, backpressure algorithm, distributed traffic signal control, sub-area boundary control, hierarchical multi-granularity, Macroscopic Fundamental Diagram (MFD)

摘要: 针对城市交通子区内部与边界交叉口的协调控制问题,提出基于分层多粒度与宏观基本图的交通信号控制模型HDMF。首先利用城市交通系统的分层多粒度特性与粗糙集理论描述交通要素的实时状态;然后结合基于背压算法的分布式交叉信号控制和交通元素的动态特性,计算交叉口相位压力并对相位进行决策;最后使用宏观基本图(MFD)实现区域驶出总流量最大和各子区内存在车辆数量最优。实验结果显示,HDMF模型与协同最大压力控制模型EMP、基于MFD和混合遗传模拟退火算法的HGA模型相比,平均排队长度分别降低了6.35%和10.01%,平均行程时间分别降低了6.55%和11.15%,表明HDMF模型能够有效疏导子区域内部与边界的交通,实现整体路网的车流量最大化。

关键词: 交通信号控制, 背压算法, 分布式交通信号控制, 子区边界控制, 分层多粒度, 宏观基本图

CLC Number: