[1] 樊哲宁, 杨秋辉, 翟宇鹏, 等. 重复数据中关键属性值缺失填补的改进ROUSTIDA算法[J]. 计算机科学,2019,46(2):30-34. (FAN Z N,YANG Q H,ZHAI Y P,et al. Improved ROUSTIDA algorithm for missing data imputation with key attributes in repetitive data[J]. Computer Science,2019,46(2):30-34.) [2] WANG X,LI A,JIANG Z,et al. Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme[J]. BMC Bioinformatics, 2006,7:No. 32. [3] STEKHOVEN D J,BÜHLMANN P. MissForest-non-parametric missing value imputation for mixed-type data[J]. Bioinformatics, 2012,28(1):112-118. [4] DIXON J K. Pattern recognition with partly missing data[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979,9(10):617-621. [5] RANJBAR M,MORADI P,AZAMI M,et al. An imputation-based matrix factorization method for improving accuracy of collaborative filtering systems[J]. Engineering Applications of Artificial Intelligence,2015,46(Pt A):58-66. [6] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences,1982,11(5):341-356. [7] ZHU W,ZHANG W,FU Y. An incomplete data analysis approach using rough set theory[C]//Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation. Piscataway:IEEE,2004:332-338. [8] 蒋亚军, 娄臻亮. 具有连续属性的不完备信息系统Rough集扩展[J]. 上海交通大学学报,2005,39(8):1322-1326.(JIANG Y J, LOU Z L. The extension of rough sets in incomplete information systems containing continuous attributes[J]. Journal of Shanghai Jiaotong University,2005,39(8):1322-1326.) [9] 朱小飞, 卓丽霞. 一种基于量化容差关系的不完备数据分析方法[J]. 重庆工学院学报,2005,19(5):23-25.(ZHU X F, ZHUO L X. An incomplete data analysis method based on the values tolerance relation[J]. Journal of Chongqing Institute of Technology,2005,19(5):23-25.) [10] 刘文军. 基于粗糙集理论的不完备决策表的完备化方法[J]. 长沙电力学院学报(自然科学版),2006,21(4):60-64.(LIU W J. A completion algorithm of incomplete decision table[J]. Journal of Changsha University of Electric Power (Natural Science),2006,21(4):60-64.) [11] 王国胤. Rough集理论在不完备信息系统中的扩充[J]. 计算机研究与发展,2002,39(10):1238-1243. (WANG G Y. Extension of rough set under incomplete information systems[J]. Journal of Computer Research and Development,2002,39(10):1238-1243.) [12] 霍忠诚, 曾玲, 范婷. 基于粗糙集的不完备数据分析方法[J]. 桂林电子科技大学学报,2011,31(5):419-421,425.(HUO Z C,ZENG L,FAN T. A new incomplete data analysis method based on rough sets[J]. Journal of Guilin University of Electronic Technology,2011,31(5):419-421,425.) [13] 丁春荣, 李龙澍. 基于相似关系向量的改进ROUSTIDA算法[J]. 计算机工程与应用,2014,50(13):133-13.6(DING C R,LI L S. Improved ROUSTIDA algorithm based on similarity relation vector[J]. Computer Engineering and Applications, 2014,50(13):133-136.) [14] 关莹, 苏贵斌, 康熠华. 一种改进的ROUSTIDA数据填补方法[J]. 软件导刊,2016,15(11):12-14.(GUAN Y,SU G B, KANG Y H. An improved method for data reinforcement of ROUSTIDA[J]. Software Guide,2016,15(11):12-14.) [15] BAI X,ZHANG M,WU Q,et al. A novel data filling algorithm for incomplete information system based on valued limited tolerance relation[J]. International Journal of Database Theory and Application,2015,8(6):149-164 [16] PRIETO-CUBIDES J,ARGOTY C. Dealing with missing data using a selection algorithm on rough sets[J]. International Journal of Computational Intelligence Systems,2018,11(1):1307-1321. [17] ZENG A,LI T,LIU D,et al. A fuzzy rough set approach for incremental feature selection on hybrid information systems[J]. Fuzzy Sets and Systems,2015,258:39-60. [18] GÉRON A. Hands-On Machine Learning with Scikit-Learn and TensorFlow:Concepts,Tools,and Techniques to Build Intelligent Systems:1st Ed[M]. Sebastopol,CA:O' Reilly Media,2017:91-92. [19] HE R,XU C,LI D,et al. A fuzzy-rough-based approach for uncertainty classification on hybrid information system[C]//Proceedings of the IEEE 3rd International Conference on Image, Vision and Computing. Piscataway:IEEE,2018:791-796. [20] GRZYMALA-BUSSE J W,GOODWIN L K,GRZYMALA-BUSSE W J,et al. Handling missing attribute values in preterm birth data sets[C]//Proceedings of the 10th International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing,LNCS 3642. Berlin:Springer,2015:342-351. [21] 周志华. 机器学习[M]. 北京:清华大学出版社,2016:93-94. (ZHOU Z H. Machine Learning[M]. Beijing:Tsinghua University Press,2016:93-94.) [22] DAUWELS J,GARG L,EARNEST A,et al. Tensor factorization for missing data imputation in medical questionnaires[C]//Proceedings of the 2012 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE, 2012:2109-2112. [23] DUA D,GRAFF C. UCI machine learning repository[DS/OL].[2020-03-10]. http://archive.ics.uci.edu/ml. [24] ALEXKSANDER O. Rosetta[EB/OL].[2020-03-10]. http://www.idi.ntnu.no/~aleks/rosetta/. [25] ALFONS A. simFrame:simulation framework[DB/OL].[2020-03-10]. https://CRAN.R-project.org/package=simFrame. [26] CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297. [27] HSU C W,CHANG C C,LIN C J. A practical guide to support vector classification[J]. Bioinformatics,2010,67(5):4-5. [28] ZHENG A, CASARI A. Feature Engineering for Machine Learning[M]. Sebastopol,CA:O'Reilly Media,2018:45-47. [29] LALL U, SHARMA A. A nearest neighbor bootstrap for resampling hydrologic time series[J]. Water Resources Research, 1996,32(3):679-693. |