[1] 屠恩美, 杨杰. 半监督学习理论及其研究进展概述[J]. 上海交通大学学报,2018,52(10):1280-1291.(TU E M,YANG J. A review of semi-supervised learning theories and recent advances[J]. Journal of Shanghai Jiao Tong University,2018,52(10):1280-1291.) [2] GOUTTE C, CANCEDDA N, DYMETMAN M, et al. Semisupervised learning for machine translation[J]. Journal of the Royal Statistical Society,2017,172(2):530-530. [3] HU T,HUANG X,LI J,et al. A novel co-training approach for urban land cover mapping with unclear Landsat time series imagery[J]. Remote Sensing of Environment,2018,217:144-157. [4] LI X,LU H,YANG J,et al. Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples[J]. Plasma Science and Technology,2019,21(3):No. 034015. [5] XU Z,CAO Y,KANG Y. Deep spatiotemporal residual early-late fusion network for city region vehicle emission pollution prediction[J]. Neurocomputing,2019,355:183-199. [6] ZHANG Z,HU Z,YANG H,et al. Factorization machines and deep views-based co-training for improving answer quality prediction in online health expert question-answering services[J]. Journal of Biomedical Informatics,2018,87:21-36. [7] 付治, 王红军, 李天瑞, 等. 基于k个标记样本的弱监督学习框架[J]. 软件学报,2020,31(4):981-990.(FU Z,WANG H J,LI T R,et al. Weakly supervised learning framework based on k labeled samples[J]. Journal of Software,2020,31(4):981-990.) [8] GAN H,LUO Z,FAN Y,et al. Enhanced manifold regularization for semi-supervised classification[J]. Journal of the Optical Society of America A:Optics,Image Science,and Vision,2016,33(6):1207-1213. [9] WU D,SHANG M,LUO X,et al. Self-training semi-supervised classification based on density peaks of data[J]. Neurocomputing, 2018,275:180-191. [10] 陈叶旺, 申莲莲, 钟才明, 等. 密度峰值聚类算法综述[J]. 计算机研究与发展,2020,57(2):378-394.(CHEN Y W,SHEN L L, ZHONG C M, et al. Survey on density peak clustering algorithm[J]. Journal of Computer Research and Development, 2020,57(2):378-394.) [11] 马春来, 单洪, 马涛. 一种基于簇中心点自动选择策略的密度峰值聚类算法[J]. 计算机科学,2016,43(7):255-258,280. (MA C L,SHAN H,MA T. Improved density peaks based clustering algorithm with strategy choosing cluster center automatically[J]. Computer Science, 2016, 43(7):255-258,280.) [12] 龚彦鹭, 吕佳. 结合主动学习和密度峰值聚类的协同训练算法[J]. 计算机应用,2019,39(8):2297-2301.(GONG Y L,LYU J. Co-training algorithm with combination of active learning and density peak clustering[J]. Journal of Computer Applications, 2019,39(8):2297-2301.) [13] ZHAO J,LIU N,MALOV A. Safe semi-supervised classification algorithm combined with active learning sampling strategy[J]. Journal of Intelligent and Fuzzy Systems,2018,35(4):4001-4010. [14] PENG J,AVED A J,SEETHARAMAN G,et al. Multiview boosting with information propagation for classification[J]. IEEE Transactions on Neural Networks and Learning Systems,2018,29(3):657-669. [15] 赵嘉, 姚占峰, 吕莉, 等. 基于相互邻近度的密度峰值聚类算法[J/OL]. 控制与决策,[2020-06-13]. https://doi.org/10.13195/j.kzyjc.2019.0795. (ZHAO J,YAO Z F,LYU L, et al. Density peaks clustering based on mutual neighbor degree[J]. Control and Decision,[2020-06-13]. https://doi.org/10.13195/j.kzyjc.2019.0795.) [16] TAN Q,YU G,WANG J,et al. Individuality- and commonalitybased multiview multilabel learning[J]. IEEE Transactions on Cybernetics,2019(Early Access):1-12. [17] YUAN H,TANG Y Y. Spectral-spatial shared linear regression for hyperspectral image classification[J]. IEEE Transaction on Cybernetics,2017,47(4):934-945. [18] XU N, GUO Y, WANG J, et al. Multi-view clustering via simultaneously learning shared subspace and affinity matrix[J]. International Journal of Advanced Robotic Systems,2017,14(6):1-8. [19] RODRIGUEZ A,LAIO A. Clustering by fast search and find of density peaks[J]. Science,2014,344(6191):1492-1496. [20] JI D Y,KIM S H,LEE K Y,et al. Experimental study of small scale siphon breaker to verify Siphon Breaker Simulation Program (SBSP)[J]. Annals of Nuclear Energy,2018,121:406-413. [21] JIANG W,MA T,FENG X,et al. Robust semi-nonnegative matrix factorization with adaptive graph regularization for gene representation[J]. Chinese Journal of Electronics,2020,29(1):122-131. [22] MEKTHANAVANH V,LI T,MENG H,et al. Social Web video clustering based on multi-view clustering via nonnegative matrix factorization[J]. International Journal of Machine Learning and Cybernetics,2019,10(10):2779-2790. [23] CAI H,LIU B,XIAO Y,et al. Semi-supervised multi-view clustering based on orthonormality-constrained nonnegative matrix factorization[J]. Information Sciences,2020,536:171-184. |