[1] DEMIR E,BURGHOLZER W,HRUŠOVSKÝ M,et al. A green intermodal service network design problem with travel time uncertainty[J]. Transportation Research Part B:Methodological, 2016,93(Pt B):789-807. [2] 钟校, 张玉召, 任斌. 考虑碳排放的快捷货运方式选择模型[J]. 交通运输系统工程与信息,2018,18(6):250-256.(ZHONG X, ZHANG Y Z,REN B. Selection model of express freight with the consideration of carbon emission[J]. Journal of Transportation Systems Engineering and Information Technology,2018,18(6):250-256.) [3] 刘慧, 杨超. 需求不确定的服务设施网络设计模型鲁棒性研究[J]. 运筹与管理,2016,25(1):117-125.(LIU H,YANG C. Robust research on service facility network design problem with demand uncertainty[J]. Operations Research and Management Science,2016,25(1):117-125.) [4] 王保华, 何世伟. 综合运输体系下快捷货物运输网络资源配置优化模型及算法[J]. 铁道学报,2017,39(2):10-16.(WANG B H,HE S W. Resource planning optimization model and algorithm for multi-modal express shipment network[J]. Journal of the China Railway Society,2017,39(2):10-16.) [5] PAWLAK Z. Rough set theory and its applications[J]. Journal of Telecommunications and Information Technology,2002,3(3):7-10. [6] PAWLAK Z, SKOWRON A. Rudiments of rough sets[J]. Information Sciences,2007,177(1):3-27. [7] 高静, 程铭. 粗糙集理论辅助现代医疗诊断研究综述[J]. 科技与创新,2019(11):25-27.(GAO J,CHENG M. A review of modern medical diagnosis aided by rough set theory[J]. Science and Technology & Innovation,2019(11):25-27.) [8] 刘伟, 黎劲松, 刘爱军. 用于电力系统故障诊断的优势粗糙集分类系统研究[J]. 电工技术,2018(22):57-60.(LIU W,LI J S, LIU A J. Research of classification system based on dominance rough set for power system fault diagnosis[J]. Electric Engineering,2018(22):57-60.) [9] 张友鹏, 江雪莹, 赵斌. 融合粗糙集与灰色模型的道岔故障预测[J]. 铁道科学与工程学报,2019,16(9):2331-2338.(ZHANG Y P,JIANG X Y,ZHAO B. Turnout fault prediction based on rough set and grey model[J]. Journal of Railway Science and Engieering, 2019,16(9):2331-2338.) [10] 胡晓元, 孙秉珍. 基于双论域量化模糊粗糙集的公共卫生应急决策模型[J]. 系统科学与数学,2019,39(3):409-424.(HU X Y,SUN B Z. The model of public health emergency decisionmaking based on double quantitative fuzzy rough set over two universes[J]. Journal of Systems Science and Mathematical Sciences,2019,39(3):409-424.) [11] 孙秉珍, 马卫民. 应急管理中不确定决策的双论域粗糙集理论与方法研究[M]. 上海:同济大学出版社,2017:60-86.(SUN B Z,MA W M. Research on the Theory and Methodology Over Two Universes for Uncertainty Decision-making in Emergency Management[M]. Shanghai:Tongji University Press, 2017:60-86.) [12] CHEN D,YANG Y,DONG Z. An incremental algorithm for attribute reduction with variable precision rough sets[J]. Applied Soft Computing,2016,45:129-149. [13] ZHANG W,REN L,WANG L. A method of deep belief network image classification based on probability measure rough set theory[J]. International Journal of Pattern Recognition and Artificial Intelligence,2018,32(11):No. 1850040. [14] AN S,HU Q,PEDRYCZ W,et al. Data-distribution-aware fuzzy rough set model and its application to robust classification[J]. IEEE Transactions on Cybernetics,2016,46(12):3073-3085. [15] ABD EL-MONSEF M E,EL-GAYAR M A,AQEEL R M. A comparison of three types of rough fuzzy sets based on two universal sets[J]. International Journal of Machine Learning and Cybernetics,2017,8(1):343-353. [16] 孙秉珍, 胡晓元. 双论域上量化粗糙集模型及应用[J]. 计算机工程与应用,2017,53(20):50-55,99.(SUN B Z,HU X Y. Quantitative rough set model over two universes and its application[J]. Computer Engineering and Applications,2017,53(20):50-55,99.) [17] LIU G. Rough set theory based on two universal sets and its applications[J]. Knowledge-Based Systems, 2010, 23(2):110-115. [18] 罗术群. 双论域直觉模糊粗糙集及其不确定度量研究[D]. 重庆:重庆理工大学,2014:19-41.(LUO S Q. Intuitionistic fuzzy rough set over two universes and its uncertainty measures[D]. Chongqing:Chongqing University of Technology,2014:19-41.) |