[1] 张挺, 杜奕, 黄涛, 等. 一种基于并行SNESIM的空间数据重建方法[J]. 计算机研究与发展, 2015, 52(6):1431-1442.(ZHANG T, DU Y, HUANG T, et al. A reconstruction method for spatial data using parallel SNESIM[J]. Journal of Computer Research and Development, 2015, 52(6):1431-1442.) [2] CHEN K L, LORENZ D A. Image sequence interpolation based on optical flow, segmentation, and optimal control[J]. IEEE Transactions on Image Processing, 2012, 21(3):1020-1030. [3] JU Y, ZHANG Q G, YANG Y M, et al. An experimental investigation on the mechanism of fluid flow through single rough fracture of rock[J]. Science China Technological Sciences, 2013, 56(8):2070-2080. [4] 冯丽芳. 低强度脉冲超声波对多孔钛合金成骨作用的影响及生物信息学分析预测[D]. 沈阳:中国医科大学, 2018:1.(FENG L F. The effect of low-intensity pulsed ultrasound on osteogenesis in porous titanium alloy scaffolds and bioinformatics analysis and prediction[D]. Shenyang:China Medical University, 2018:1.) [5] 杜奕, 张挺, 卢德唐, 等. 一种基于改进的Markov模型的插值方法[J]. 计算机研究与发展, 2012, 49(3):565-571.(DU Y, ZHANG T, LU D T, et al. An interpolation method using an improved Markov model[J]. Journal of Computer Research and Development, 2012, 49(3):565-571.) [6] ZHOU F D, SHIELDS D, TYSON S, et al. Comparison of sequential indicator simulation, object modelling and multiple-point statistics in reproducing channel geometries and continuity in 2D with two different spaced conditional datasets[J]. Journal of Petroleum Science and Engineering, 2018, 166:718-730. [7] 史加荣, 马媛媛. 深度学习的研究进展与发展[J]. 计算机工程与应用, 2018, 54(10):1-10.(SHI J R, MA Y Y. Research progress and development of deep learning[J]. Computer Engineering and Applications, 2018, 54(10):1-10.) [8] 李燕萍, 曹盼, 石杨, 等. 非平行文本下基于变分自编码器和辅助分类器生成对抗网络的语音转换[J]. 复旦学报(自然科学版), 2020, 59(3):322-329.(LI Y P, CAO P, SHI Y, et al. Voice conversion based on variational autoencoder and auxiliary classifier generative adversarial network in non-parallel corpora[J]. Journal of Fudan University(Natural Science), 2020, 59(3):322-329.) [9] 张文强, 陈静, 杨伟, 等. 基于VAE-CGAN的光伏不确定性建模方法[J]. 电网技术, 2021, 45(4):1273-1279.(ZHANG W Q, CHEN J, YANG W, et al. Photovoltaic uncertainty modeling based on VAECGAN[J]. Power System Technology, 2021, 45(4):1273-1279.) [10] REZENDE D J, MOHAMED S. Variational inference with normalizing flows[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR. org, 2015:1530-1538. [11] JOYCE J M. Kullback-Leibler Divergence[M]. Berlin:Springer, 2011:720-722. [12] DONG C X, XUE T F, WANG C. The feature representation ability of variational AutoEncoder[C]//Proceedings of the IEEE 3rd International Conference on Data Science in Cyberspace. Piscataway:IEEE, 2018:680-684. [13] BOWMAN S R, VILNIS L, VINYALS O, et al. Generating sentences from a continuous space[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning. Stroudsburg, PA:Association for Computational Linguistics, 2016:10-21. [14] VIGNAT C, BERCHER J F. Analysis of signals in the FisherShannon information plane[J]. Physics Letters A, 2003, 312(1/2):27-33. [15] DEMBO A, COVER T M, THOMAS J A. Information theoretic inequalities[J]. IEEE Transactions on Information Theory, 1991, 37(6):1501-1518. [16] PAITHANKAR A, CHATTERJEE S. Grade and tonnage uncertainty analysis of an African copper deposit using multiplepoint geostatistics and sequential Gaussian simulation[J]. Natural Resources Research, 2018, 27(4):419-436. [17] KANG J J, FAHD K, VENKATRAMAN S. An enhanced inference algorithm for data sampling efficiency and accuracy using periodic beacons and optimization[J]. Big Data and Cognitive Computing, 2019, 3(1):No. 7. |