[1] PIERLEONI P,BELLI A,PALMA L,et al. A high reliability wearable device for elderly fall detection[J]. IEEE Sensors Journal,2015,15(8):4544-4553. [2] SUCERQUIA A,LÓPEZ J D,VARGAS-BONILLA J F. Real-life/real-time elderly fall detection with a triaxial accelerometer[J]. Sensors,2018,18(4):No. 1101. [3] NWEKE H F,TEH Y W,MUJTABA G,et al. Data fusion and multiple classifier systems for human activity detection and health monitoring:review and open research directions[J]. Information Fusion,2019,46:147-170. [4] ZERROUKI N,HOUACINE A. Combined curvelets and hidden Markov models for human fall detection[J]. Multimedia Tools and Applications,2017,77(5):6405-6424. [5] 黄濛濛, 刘军, 张逸凡, 等. 基于无线信道状态信息的跌倒无源监测方法[J]. 计算机应用,2019,39(5):1528-1533.(HUANG M M,LIU J,ZHANG Y F,et al. Passive monitoring method for falls based on wireless channel state information[J]. Journal of Computer Applications,2019,39(5):1528-1533.) [6] SALEH M,LE BOUQUIN JEANNÈS R. Elderly fall detection using wearable sensors:a low cost highly accurate algorithm[J]. IEEE Sensors Journal,2019,19(8):3156-3164. [7] KARANTONIS D M,NARAYANAN M R,MATHIE M,et al. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring[J]. IEEE Transactions on Information Technology in Biomedicine,2006,10(1):156-167. [8] HENG W Z,PANG G Y,XU F H,et al. Flexible insole sensors with stably connected electrodes for gait phase detection[J]. Sensors,2019,19(23):No. 5197. [9] 郭欣, 王红豆, 孙连浩, 等. 基于改进姿态估计算法的嵌入式平台实时跌倒检测[J]. 科学技术与工程,2020,20(30):12500-12506.(GUO X,WANG H D,SUN L H,et al. Real-time fall detection for embedded platform based on improved pose estimation algorithm[J]. Science Technology and Engineering,2020,20(30):12500-12506.) [10] 罗涛, 杨海, 李莉, 等. 基于SINS的老人跌倒实时监测方法[J]. 传感器与微系统,2020,39(1):56-59.(LUO T,YANG H,LI L,et al. Method for real-time monitoring on falling of elderly people based on SINS[J]. Transducer and Microsystem Technologies,2020,39(1):56-59.) [11] YAN Y,OU Y. Accurate fall detection by nine-axis IMU sensor[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics. Piscataway:IEEE,2017:854-859. [12] 罗丹, 罗海勇. 基于随机森林的跌倒检测算法[J]. 计算机应用,2015,35(11):3157-3160,3165.(LUO D,LUO H Y. Fall detection algorithm based on random forest[J]. Journal of Computer Applications,2015,35(11):3157-3160,3165.) [13] 李光华, 李俊清, 张亮, 等. 一种融合蚁群算法和随机森林的特征选择方法[J]. 计算机科学,2019,46(11A):212-215.(LI G H,LI J Q,ZHANG L,et al. Feature selection method based on ant colony optimization and random forest[J]. Computer Science, 2019,46(11A):212-215.) [14] ZHOU Z H,FENG J. Deep forest:towards an alternative to deep neural networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2017:3553-3559. [15] 袁帅, 余伟, 余放, 等. 面向不平衡数据集分类的离散高维空间距离采样和极端随机树算法[J]. 计算机应用与软件,2020,37(7):194-199,211.(YUAN S,YU W,YU F,et al. Discrete high-dimensional spatial distance sampling and extreme randomized trees algorithm for the classification of imbalanced data sets[J]. Computer Applications and Software,2020,37(7):194-199,211.) [16] 傅望安, 张泽发, 黄伟. 基于极端随机树的火电厂再热器故障预警算法研究[J]. 上海电力大学学报,2020,36(5):445-450. (FU W A,ZHANG Z F,HUANG W. Research on fault early warning algorithm of reheater in thermal power plant based on extreme random tree[J]. Journal of Shanghai University of Electric Power,2020,36(5):445-450.) [17] SUCERQUIA A,LÓPEZ J D,VARGAS-BONILLA J F. SisFall:a fall and movement dataset[J]. Sensors,2017,17(1):No. 198. [18] 忽丽莎, 王素贞, 陈益强, 等. 基于可穿戴设备的跌倒检测算法综述[J]. 浙江大学学报(工学版),2018,52(9):1717-1728. (HU L S, WANG S Z, CHEN Y Q, et al. Fall detection algorithms based on wearable device:a review[J]. Journal of Zhejiang University(Engineering Science),2018,52(9):1717-1728.) |