[1] 薛宏涛, 叶媛媛, 沈林成, 等. 多智能体系统体系结构及协调机制研究综述[J]. 机器人,2001,23(1):85-90.(XUE H T,YE Y Y,SHEN L C,et al. A roadmap of multi-agent system architecture and coordination research[J]. Robot,2001,3(1):85-90.) [2] 柴运, 熊涛. 基于二层邻居信息的多智能体系统编队控制[J]. 计算机应用,2017,37(8):2264-2269.(CHAI Y,XIONG T. Second-order information based formation control in multi-agent system[J]. Journal of Computer Applications,2017,37(8):2264-2269.) [3] OLFATI-SABER R,FAX J A,MURRAY R M. Consensus and cooperation in networked multi-agent systems[J]. Proceedings of the IEEE,2007,95(1):215-233. [4] YOU K Y,XIE L H. Coordination of discrete-time multi-agent systems via relative output feedback[J]. International Journal of Robust and Nonlinear Control,2011,21(13):1587-1605. [5] ZHANG W B, TANG Y, LIU Y R, et al. Event-triggering containment control for a class of multi-agent networks with fixed and switching topologies[J]. IEEE Transactions on Circuits and Systems I:Regular Papers,2017,64(3):619-629. [6] 宗鑫, 崔艳. 具有随机通信时延的二阶多智能体系统的一致性控[J]. 计算机应用,2015,35(5):1358-1360,1366.(ZONG X, CUI Y. Consensus of the second-order multi-agent systems with random time-delays[J]. Journal of Computer Applications,2015, 35(5):1358-1360,1366.) [7] 王兴平, 宋艳荣, 程兆彬. 切换网络下时变线性多智能体系统的指数同步[J]. 自动化学报,2015,41(8):1528-1532.(WANG X P,SONG Y R,CHENG Z L. Exponential synchronization of timevarying linear multi-agent systems with switching topology[J]. Acta Automatic Sinica,2015,41(8):1528-1532.) [8] TAN F,ZHOU B,DUAN G R. Finite-time stabilization of linear time-varying systems by piecewise constant feedback[J]. Automatica,2016,68:277-285. [9] ZHOU B. On asymptotic stability of linear time-varying systems[J]. Automatica,2016,68:266-276. [10] ZHOU B,EGOROV A V. Razumikhin and Krasovskii stability theorems for time-varying time-delay systems[J]. Automatica, 2016,71:281-291. [11] ANDERSON B D O,SHI G D,TRUMPF J. Convergence and state reconstruction of time-varying multi-agent systems from complete observability theory[J]. IEEE Transactions on Automatic Control,2017,62(5):2519-2523. [12] BARABANOV N,ORTEGA R. Global consensus of time-varying multi-agent systems without persistent excitation assumptions[J]. IEEE Transactions on Automatic Control,2018,63(11):3935-3939. [13] HAN Y J,LU W L,CHEN T P. Consensus analysis of networks with time-varying topology and event-triggered diffusions[J]. Neural Networks,2015,71:196-203. [14] CHENG T H,KAN Z,KLOTZ J R,et al. Event-triggered control of multiagent systems for fixed and time-varying network topologies[J]. IEEE Transactions on Automatic Control,2017,62(10):5365-5371. [15] 周川, 洪小敏, 何俊达, 等. 基于事件触发的时变拓扑多智能体系统编队控制[J]. 控制与决策,2017,32(6):1103-1108. (ZHOU C,HONG X M,HE J D,et al. Formation control of multi-agent systems with time-varying topology based on eventtriggered mechanism[J]. Control and Decision,2017,32(6):1103-1108.) [16] WANG A P,ZHAO Y. Event-triggered consensus control for leader-following multi-agent systems with time-varying delays[J]. Journal of the Franklin Institute,2016,353(17):4754-4771. [17] LI X D,CAO J D. An impulsive delay inequality involving unbounded time-varying delay and applications[J]. IEEE Transactions on Automatic Control,2017,62(7):3618-3625. [18] LIU B,HILL D J,ZHANG C F,et al. Stabilization of discretetime dynamical systems under event-triggered impulsive control with and without time-delays[J]. Journal of Systems Science and Complexity,2018,31(1):130-146. [19] PENG D X,LI X D. Leader-following synchronization of complex dynamic networks via event-triggered impulsive control[J]. Neurocomputing,2020,412:1-10. [20] TAN X G,CAO J D,LI X D. Consensus of leader-following multiagent systems:a distributed event-triggered impulsive control strategy[J]. IEEE Transactions on Cybernetics,2019,49(3):792-801. [21] 柴洁, 过榴晓, 陈良康, 等. 事件触发脉冲控制的多智能体系统分群一致性[J]. 信息与控制,2020,49(5):513-520.(CHAI J, GUO L X,CHEN L K,et al. Group consensus of multi-agent systems by event-triggered impulsive strategy[J]. Information and Control,2020,49(5):513-520.) [22] YU C B,QIN J H,GAO H J. Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control[J]. Automatica,2014,50(9):2341-2349. [23] REN W,BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control,2005,50(5):655-661. [24] YU W W,CHEN G R,CAO M. Consensus in directed networks of agents with nonlinear dynamics[J]. IEEE Transactions on Automatic Control,2011,56(6):1436-1441. [25] GRONWALL T H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations[J]. Annals of Mathematics(Second Series),1919,20(4):292-296. [26] KIM H,SHIM H,BACK J,et al. Consensus of output-coupled linear multi-agent systems under fast switching network:averaging approach[J]. Automatica,2013,49(1):267-272. [27] WIELAND P,SEPULCHRE R,ALLGÖWER F. An internal model principle is necessary and sufficient for linear output synchronization[J]. Automatica,2011,47(5):1068-1074. |