Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (6): 1829-1836.DOI: 10.11772/j.issn.1001-9081.2021040577
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Zhonghua ZHANG, Fuyuan ZHAO(), Junfeng GUO, Gaochang ZHAO
Received:
2021-04-14
Revised:
2021-06-11
Accepted:
2021-06-11
Online:
2022-06-22
Published:
2022-06-10
Contact:
Fuyuan ZHAO
About author:
ZHANG Zhonghua,born in 1977,Ph. D.,professor. His research interests include pattern recognition,biomathematics.Supported by:
通讯作者:
赵福媛
作者简介:
张仲华(1977—),男,河南息县人,教授,博士,主要研究方向:模式识别、生物数学基金资助:
CLC Number:
Zhonghua ZHANG, Fuyuan ZHAO, Junfeng GUO, Gaochang ZHAO. Integrated prediction model of Cauchy adaptive backtracking search and least square support vector machine[J]. Journal of Computer Applications, 2022, 42(6): 1829-1836.
张仲华, 赵福媛, 郭钧枫, 赵高长. 柯西自适应回溯搜索与最小二乘支持向量机的集成预测模型[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1829-1836.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021040577
数据集 | 样本数 | 特征数 | |
---|---|---|---|
训练集 | 测试集 | ||
每日需求预测订单 | 48 | 12 | 12 |
混凝土塌落度测试 | 82 | 21 | 7 |
电脑硬件 | 167 | 42 | 7 |
自动手脉 | 314 | 78 | 6 |
房地产估价 | 331 | 83 | 5 |
波士顿房价 | 405 | 101 | 13 |
混凝土抗压强度 | 545 | 182 | 8 |
翼型自噪声 | 1 202 | 301 | 5 |
数值预测模型温度预报的偏差校正 | 6 200 | 1 550 | 21 |
联合循环发电厂 | 7 654 | 1 914 | 4 |
Tab. 1 Basic information of UCI datasets
数据集 | 样本数 | 特征数 | |
---|---|---|---|
训练集 | 测试集 | ||
每日需求预测订单 | 48 | 12 | 12 |
混凝土塌落度测试 | 82 | 21 | 7 |
电脑硬件 | 167 | 42 | 7 |
自动手脉 | 314 | 78 | 6 |
房地产估价 | 331 | 83 | 5 |
波士顿房价 | 405 | 101 | 13 |
混凝土抗压强度 | 545 | 182 | 8 |
翼型自噪声 | 1 202 | 301 | 5 |
数值预测模型温度预报的偏差校正 | 6 200 | 1 550 | 21 |
联合循环发电厂 | 7 654 | 1 914 | 4 |
数据集 | 参数 | CABSA-LSSVM | BSA-LSSVM | PSO-LSSVM | ABC-LSSVM | GWO-LSSVM |
---|---|---|---|---|---|---|
每日需求预测订单 | 599.681 5 | 1 000.000 0 | 27.582 8 | 1 000.000 0 | 1 000.000 0 | |
8.785 9 | 10.000 0 | 8.388 3 | 10.000 0 | 4.028 4 | ||
混凝土塌落度测试 | 884.426 0 | 865.893 2 | 73.796 5 | 100.000 0 | 68.115 6 | |
9.933 6 | 10.000 0 | 6.800 0 | 10.000 0 | 7.981 8 | ||
电脑硬件 | 974.058 6 | 515.544 7 | 65.794 3 | 23.867 1 | 18.891 8 | |
1.666 6 | 10.000 0 | 1.686 9 | 10.000 0 | 4.347 6 | ||
自动手脉 | 134.384 4 | 942.061 5 | 60.165 5 | 13.079 8 | 90.597 2 | |
8.562 3 | 10.000 0 | 0.562 3 | 1.759 4 | 2.355 4 | ||
房地产估价 | 985.417 8 | 1 000.000 0 | 3.317 3 | 1 000.000 0 | 7.472 7 | |
3.409 4 | 10.000 0 | 1.775 6 | 10.000 0 | 8.612 4 | ||
波士顿房价 | 90.965 0 | 193.641 7 | 60.071 5 | 15.269 9 | 1 000.000 0 | |
5.722 3 | 9.353 0 | 9.272 6 | 4.810 6 | 5.917 6 | ||
混凝土抗压强度 | 878.078 0 | 118.898 0 | 662.523 0 | 1 000.000 0 | 23.318 5 | |
3.571 2 | 7.347 6 | 4.885 6 | 6.551 7 | 1.128 4 | ||
翼型自噪声 | 949.560 6 | 120.634 7 | 96.928 1 | 98.546 0 | 55.217 0 | |
0.178 7 | 0.010 0 | 0.010 0 | 0.027 2 | 0.234 2 | ||
数值预测模型温度预报的偏差校正 | 72.557 1 | 74.574 9 | 39.513 7 | 39.473 0 | 29.673 4 | |
8.572 6 | 4.108 7 | 5.587 0 | 5.584 7 | 7.024 8 | ||
联合循环发电厂 | 510.463 5 | 326.633 7 | 66.218 4 | 1 000.000 0 | 11.725 4 | |
0.854 3 | 0.670 0 | 1.706 7 | 2.520 8 | 0.083 6 |
Tab. 2 Optimal parameters of different prediction models
数据集 | 参数 | CABSA-LSSVM | BSA-LSSVM | PSO-LSSVM | ABC-LSSVM | GWO-LSSVM |
---|---|---|---|---|---|---|
每日需求预测订单 | 599.681 5 | 1 000.000 0 | 27.582 8 | 1 000.000 0 | 1 000.000 0 | |
8.785 9 | 10.000 0 | 8.388 3 | 10.000 0 | 4.028 4 | ||
混凝土塌落度测试 | 884.426 0 | 865.893 2 | 73.796 5 | 100.000 0 | 68.115 6 | |
9.933 6 | 10.000 0 | 6.800 0 | 10.000 0 | 7.981 8 | ||
电脑硬件 | 974.058 6 | 515.544 7 | 65.794 3 | 23.867 1 | 18.891 8 | |
1.666 6 | 10.000 0 | 1.686 9 | 10.000 0 | 4.347 6 | ||
自动手脉 | 134.384 4 | 942.061 5 | 60.165 5 | 13.079 8 | 90.597 2 | |
8.562 3 | 10.000 0 | 0.562 3 | 1.759 4 | 2.355 4 | ||
房地产估价 | 985.417 8 | 1 000.000 0 | 3.317 3 | 1 000.000 0 | 7.472 7 | |
3.409 4 | 10.000 0 | 1.775 6 | 10.000 0 | 8.612 4 | ||
波士顿房价 | 90.965 0 | 193.641 7 | 60.071 5 | 15.269 9 | 1 000.000 0 | |
5.722 3 | 9.353 0 | 9.272 6 | 4.810 6 | 5.917 6 | ||
混凝土抗压强度 | 878.078 0 | 118.898 0 | 662.523 0 | 1 000.000 0 | 23.318 5 | |
3.571 2 | 7.347 6 | 4.885 6 | 6.551 7 | 1.128 4 | ||
翼型自噪声 | 949.560 6 | 120.634 7 | 96.928 1 | 98.546 0 | 55.217 0 | |
0.178 7 | 0.010 0 | 0.010 0 | 0.027 2 | 0.234 2 | ||
数值预测模型温度预报的偏差校正 | 72.557 1 | 74.574 9 | 39.513 7 | 39.473 0 | 29.673 4 | |
8.572 6 | 4.108 7 | 5.587 0 | 5.584 7 | 7.024 8 | ||
联合循环发电厂 | 510.463 5 | 326.633 7 | 66.218 4 | 1 000.000 0 | 11.725 4 | |
0.854 3 | 0.670 0 | 1.706 7 | 2.520 8 | 0.083 6 |
数据集 | 模型 | RMSE | MAPE/% | MAE | 运行时间/s | |
---|---|---|---|---|---|---|
每日需求预测订单 | CABSA-LSSVM | 0.909 6 | 30.901 0 | 5.156 4 | 15.997 7 | 2.348 0 |
BSA-LSSVM | 0.898 2 | 39.915 2 | 5.755 0 | 20.335 8 | 2.436 0 | |
PSO-LSSVM | 0.707 2 | 56.675 4 | 10.912 4 | 32.219 3 | 37.630 0 | |
ABC-LSSVM | 0.894 3 | 34.407 6 | 5.355 8 | 18.041 0 | 23.157 0 | |
GWO-LSSVM | 0.567 9 | 48.348 8 | 13.662 6 | 39.808 6 | 35.942 0 | |
混凝土塌落度测试 | CABSA-LSSVM | 0.992 8 | 0.685 9 | 1.471 4 | 0.522 8 | 2.040 0 |
BSA-LSSVM | 0.990 6 | 0.874 8 | 2.048 1 | 0.655 2 | 2.349 0 | |
PSO-LSSVM | 0.988 6 | 1.206 9 | 1.823 5 | 0.749 3 | 28.159 0 | |
ABC-LSSVM | 0.988 4 | 0.827 1 | 1.881 3 | 0.654 4 | 18.917 0 | |
GWO-LSSVM | 0.968 9 | 0.908 3 | 1.998 2 | 0.705 4 | 28.942 0 | |
电脑硬件 | CABSA-LSSVM | 0.925 7 | 40.219 9 | 6.303 1 | 10.236 4 | 2.616 0 |
BSA-LSSVM | 0.909 2 | 51.337 9 | 6.410 4 | 12.764 4 | 2.771 0 | |
PSO-LSSVM | 0.907 8 | 43.355 9 | 12.535 5 | 13.372 5 | 30.833 0 | |
ABC-LSSVM | 0.920 7 | 46.679 5 | 9.159 7 | 12.330 0 | 21.204 0 | |
GWO-LSSVM | 0.834 6 | 57.476 8 | 16.909 6 | 15.541 3 | 32.938 0 | |
自动手脉 | CABSA-LSSVM | 0.880 9 | 2.663 6 | 8.415 4 | 1.935 3 | 2.986 0 |
BSA-LSSVM | 0.877 9 | 2.709 2 | 8.120 0 | 1.899 5 | 3.074 0 | |
PSO-LSSVM | 0.879 9 | 2.694 6 | 8.551 7 | 1.960 9 | 38.334 0 | |
ABC-LSSVM | 0.878 7 | 2.725 6 | 8.598 3 | 1.985 4 | 29.352 0 | |
GWO-LSSVM | 0.854 6 | 3.009 2 | 9.447 4 | 2.006 4 | 36.996 0 | |
房地产估价 | CABSA-LSSVM | 0.729 1 | 7.007 5 | 14.512 5 | 4.932 3 | 3.442 0 |
BSA-LSSVM | 0.716 7 | 7.249 1 | 14.433 1 | 4.891 9 | 3.565 0 | |
PSO-LSSVM | 0.683 9 | 7.639 3 | 14.861 6 | 5.084 8 | 38.894 0 | |
ABC-LSSVM | 0.707 9 | 7.322 4 | 14.236 0 | 4.980 0 | 31.701 0 | |
GWO-LSSVM | 0.664 7 | 8.065 1 | 15.895 0 | 5.464 6 | 35.987 0 | |
波士顿房价 | CABSA-LSSVM | 0.902 4 | 2.898 4 | 10.678 4 | 2.010 6 | 4.279 0 |
BSA-LSSVM | 0.898 9 | 2.937 8 | 10.691 4 | 2.043 9 | 4.373 0 | |
PSO-LSSVM | 0.877 7 | 3.163 4 | 12.018 9 | 2.135 0 | 68.973 0 | |
ABC-LSSVM | 0.881 4 | 3.161 1 | 11.172 4 | 2.106 4 | 55.928 0 | |
GWO-LSSVM | 0.835 3 | 4.093 3 | 14.022 3 | 2.397 1 | 62.388 0 | |
混凝土抗压强度 | CABSA-LSSVM | 0.932 3 | 3.428 2 | 9.674 6 | 2.590 7 | 8.017 7 |
BSA-LSSVM | 0.920 5 | 3.849 1 | 10.776 8 | 2.875 6 | 8.932 2 | |
PSO-LSSVM | 0.929 6 | 3.603 8 | 10.896 8 | 2.627 9 | 148.571 0 | |
ABC-LSSVM | 0.908 2 | 4.027 2 | 9.967 9 | 3.057 5 | 131.257 0 | |
GWO-LSSVM | 0.876 7 | 4.814 8 | 11.867 3 | 4.985 8 | 159.291 0 | |
翼型自噪声 | CABSA-LSSVM | 0.842 0 | 2.684 2 | 1.566 4 | 1.958 5 | 18.413 0 |
BSA-LSSVM | 0.824 0 | 2.886 4 | 1.747 7 | 2.179 8 | 19.209 0 | |
PSO-LSSVM | 0.839 5 | 2.809 7 | 1.490 1 | 1.836 6 | 374.203 0 | |
ABC-LSSVM | 0.838 4 | 2.742 8 | 1.416 3 | 1.731 2 | 355.817 0 | |
GWO-LSSVM | 0.634 9 | 3.920 8 | 2.254 9 | 2.785 6 | 363.345 0 | |
数值预测模型温度预报的偏差校正 | CABSA-LSSVM | 0.951 4 | 0.687 0 | 1.691 4 | 0.505 5 | 741.619 0 |
BSA-LSSVM | 0.932 1 | 0.732 0 | 1.782 4 | 0.549 9 | 797.443 0 | |
PSO-LSSVM | 0.932 6 | 0.728 2 | 1.772 9 | 0.546 1 | 56 872.778 0 | |
ABC-LSSVM | 0.932 5 | 0.729 2 | 1.773 9 | 0.547 1 | 55 317.355 0 | |
GWO-LSSVM | 0.826 9 | 1.050 0 | 2.665 3 | 1.048 6 | 58 175.648 0 | |
联合循环发电厂 | CABSA-LSSVM | 0.955 4 | 3.602 0 | 0.609 0 | 2.761 2 | 1 664.429 0 |
BSA-LSSVM | 0.948 3 | 3.906 8 | 0.619 9 | 2.814 6 | 1 781.277 0 | |
PSO-LSSVM | 0.945 7 | 3.939 5 | 0.659 7 | 2.997 8 | 86 382.698 0 | |
ABC-LSSVM | 0.939 1 | 4.174 9 | 0.678 2 | 3.063 8 | 79 741.874 0 | |
GWO-LSSVM | 0.915 1 | 5.145 9 | 0.872 2 | 3.914 8 | 8 733.509 0 |
Tab. 3 Performance indicators of different prediction models
数据集 | 模型 | RMSE | MAPE/% | MAE | 运行时间/s | |
---|---|---|---|---|---|---|
每日需求预测订单 | CABSA-LSSVM | 0.909 6 | 30.901 0 | 5.156 4 | 15.997 7 | 2.348 0 |
BSA-LSSVM | 0.898 2 | 39.915 2 | 5.755 0 | 20.335 8 | 2.436 0 | |
PSO-LSSVM | 0.707 2 | 56.675 4 | 10.912 4 | 32.219 3 | 37.630 0 | |
ABC-LSSVM | 0.894 3 | 34.407 6 | 5.355 8 | 18.041 0 | 23.157 0 | |
GWO-LSSVM | 0.567 9 | 48.348 8 | 13.662 6 | 39.808 6 | 35.942 0 | |
混凝土塌落度测试 | CABSA-LSSVM | 0.992 8 | 0.685 9 | 1.471 4 | 0.522 8 | 2.040 0 |
BSA-LSSVM | 0.990 6 | 0.874 8 | 2.048 1 | 0.655 2 | 2.349 0 | |
PSO-LSSVM | 0.988 6 | 1.206 9 | 1.823 5 | 0.749 3 | 28.159 0 | |
ABC-LSSVM | 0.988 4 | 0.827 1 | 1.881 3 | 0.654 4 | 18.917 0 | |
GWO-LSSVM | 0.968 9 | 0.908 3 | 1.998 2 | 0.705 4 | 28.942 0 | |
电脑硬件 | CABSA-LSSVM | 0.925 7 | 40.219 9 | 6.303 1 | 10.236 4 | 2.616 0 |
BSA-LSSVM | 0.909 2 | 51.337 9 | 6.410 4 | 12.764 4 | 2.771 0 | |
PSO-LSSVM | 0.907 8 | 43.355 9 | 12.535 5 | 13.372 5 | 30.833 0 | |
ABC-LSSVM | 0.920 7 | 46.679 5 | 9.159 7 | 12.330 0 | 21.204 0 | |
GWO-LSSVM | 0.834 6 | 57.476 8 | 16.909 6 | 15.541 3 | 32.938 0 | |
自动手脉 | CABSA-LSSVM | 0.880 9 | 2.663 6 | 8.415 4 | 1.935 3 | 2.986 0 |
BSA-LSSVM | 0.877 9 | 2.709 2 | 8.120 0 | 1.899 5 | 3.074 0 | |
PSO-LSSVM | 0.879 9 | 2.694 6 | 8.551 7 | 1.960 9 | 38.334 0 | |
ABC-LSSVM | 0.878 7 | 2.725 6 | 8.598 3 | 1.985 4 | 29.352 0 | |
GWO-LSSVM | 0.854 6 | 3.009 2 | 9.447 4 | 2.006 4 | 36.996 0 | |
房地产估价 | CABSA-LSSVM | 0.729 1 | 7.007 5 | 14.512 5 | 4.932 3 | 3.442 0 |
BSA-LSSVM | 0.716 7 | 7.249 1 | 14.433 1 | 4.891 9 | 3.565 0 | |
PSO-LSSVM | 0.683 9 | 7.639 3 | 14.861 6 | 5.084 8 | 38.894 0 | |
ABC-LSSVM | 0.707 9 | 7.322 4 | 14.236 0 | 4.980 0 | 31.701 0 | |
GWO-LSSVM | 0.664 7 | 8.065 1 | 15.895 0 | 5.464 6 | 35.987 0 | |
波士顿房价 | CABSA-LSSVM | 0.902 4 | 2.898 4 | 10.678 4 | 2.010 6 | 4.279 0 |
BSA-LSSVM | 0.898 9 | 2.937 8 | 10.691 4 | 2.043 9 | 4.373 0 | |
PSO-LSSVM | 0.877 7 | 3.163 4 | 12.018 9 | 2.135 0 | 68.973 0 | |
ABC-LSSVM | 0.881 4 | 3.161 1 | 11.172 4 | 2.106 4 | 55.928 0 | |
GWO-LSSVM | 0.835 3 | 4.093 3 | 14.022 3 | 2.397 1 | 62.388 0 | |
混凝土抗压强度 | CABSA-LSSVM | 0.932 3 | 3.428 2 | 9.674 6 | 2.590 7 | 8.017 7 |
BSA-LSSVM | 0.920 5 | 3.849 1 | 10.776 8 | 2.875 6 | 8.932 2 | |
PSO-LSSVM | 0.929 6 | 3.603 8 | 10.896 8 | 2.627 9 | 148.571 0 | |
ABC-LSSVM | 0.908 2 | 4.027 2 | 9.967 9 | 3.057 5 | 131.257 0 | |
GWO-LSSVM | 0.876 7 | 4.814 8 | 11.867 3 | 4.985 8 | 159.291 0 | |
翼型自噪声 | CABSA-LSSVM | 0.842 0 | 2.684 2 | 1.566 4 | 1.958 5 | 18.413 0 |
BSA-LSSVM | 0.824 0 | 2.886 4 | 1.747 7 | 2.179 8 | 19.209 0 | |
PSO-LSSVM | 0.839 5 | 2.809 7 | 1.490 1 | 1.836 6 | 374.203 0 | |
ABC-LSSVM | 0.838 4 | 2.742 8 | 1.416 3 | 1.731 2 | 355.817 0 | |
GWO-LSSVM | 0.634 9 | 3.920 8 | 2.254 9 | 2.785 6 | 363.345 0 | |
数值预测模型温度预报的偏差校正 | CABSA-LSSVM | 0.951 4 | 0.687 0 | 1.691 4 | 0.505 5 | 741.619 0 |
BSA-LSSVM | 0.932 1 | 0.732 0 | 1.782 4 | 0.549 9 | 797.443 0 | |
PSO-LSSVM | 0.932 6 | 0.728 2 | 1.772 9 | 0.546 1 | 56 872.778 0 | |
ABC-LSSVM | 0.932 5 | 0.729 2 | 1.773 9 | 0.547 1 | 55 317.355 0 | |
GWO-LSSVM | 0.826 9 | 1.050 0 | 2.665 3 | 1.048 6 | 58 175.648 0 | |
联合循环发电厂 | CABSA-LSSVM | 0.955 4 | 3.602 0 | 0.609 0 | 2.761 2 | 1 664.429 0 |
BSA-LSSVM | 0.948 3 | 3.906 8 | 0.619 9 | 2.814 6 | 1 781.277 0 | |
PSO-LSSVM | 0.945 7 | 3.939 5 | 0.659 7 | 2.997 8 | 86 382.698 0 | |
ABC-LSSVM | 0.939 1 | 4.174 9 | 0.678 2 | 3.063 8 | 79 741.874 0 | |
GWO-LSSVM | 0.915 1 | 5.145 9 | 0.872 2 | 3.914 8 | 8 733.509 0 |
1 | 仝玉婷.最小二乘支持向量回归机的算法研究[D].金华:浙江师范大学,2018:2-17. 10.1016/j.ipl.2018.01.014 |
TONG Y T. Study of least square support vector regression[D]. Jinhua: Zhejiang Normal University, 2018: 2-17. 10.1016/j.ipl.2018.01.014 | |
2 | 郭新辰. 最小二乘支持向量机算法及应用研究[D]. 长春:吉林大学, 2008: 16-20. |
GUO X C. Study on least square support vector algorithms and their applications[D]. Changchun: Jilin University, 2008: 16-20. | |
3 | TIAN Z D. Backtracking search optimization algorithm-based least square support vector machine and its applications[J]. Engineering Applications of Artificial Intelligence, 2020, 94: No.103801. 10.1016/j.engappai.2020.103801 |
4 | XIA S Y, WANG G Y, CHEN Z Z, et al. Complete random forest based class noise filtering learning for improving the generalizability of classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(11): 2063-2078. 10.1109/tkde.2018.2873791 |
5 | XIA S Y, CHEN B Y, WANG G Y, et al. mCRF and mRD: two classification methods based on a novel multiclass label noise filtering learning framework[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021(Early Access): 1-15. 10.1109/TNNLS.2020.3047046 |
6 | KIM H Y, WON C H. Forecasting the volatility of stock price index: a hybrid model integrating LSTM with multiple GARCH-type models[J]. Expert Systems with Applications, 2018, 103: 25-37. 10.1016/j.eswa.2018.03.002 |
7 | ZENDEHBOUDI A. Implementation of GA-LSSVM modelling approach for estimating the performance of solid desiccant wheels[J]. Energy Conversion and Management, 2016, 127: 245-255. 10.1016/j.enconman.2016.08.070 |
8 | CHAMKALANI A, ZENDEHBOUDI S, BAHADORI A, et al. Integration of LSSVM technique with PSO to determine asphaltene deposition[J]. Journal of Petroleum Science and Engineering, 2014, 124: 243-253. 10.1016/j.petrol.2014.10.001 |
9 | TIAN Z D, LI S J, WANG Y H, et al. A prediction method based on wavelet transform and multiple models fusion for chaotic time series[J]. Chaos, Solitons and Fractals, 2017, 98: 158-172. 10.1016/j.chaos.2017.03.018 |
10 | LIU W C, ZHANG X R. Research on the supply chain risk assessment based on the improved LSSVM algorithm[J]. International Journal of u- and e- Service, Science and Technology, 2016, 9(8): 297-306. 10.14257/ijunesst.2016.9.8.25 |
11 | JAIN S, BAJAJ V, KUMAR A. Efficient algorithm for classification of electrocardiogram beats based on artificial bee colony-based least-squares support vector machines classifier[J]. Electronics Letters, 2016, 52(14): 1198-1200. 10.1049/el.2016.1171 |
12 | YANG A L, LI W D, YANG X. Short-term electricity load forecasting based on feature selection and least squares support vector machines[J]. Knowledge-Based Systems, 2019, 163: 159-173. 10.1016/j.knosys.2018.08.027 |
13 | 董彩云. 刀具磨损状态识别和预测方法研究[D]. 武汉:华中科技大学, 2017: 34-54. |
DONG C Y. Research on state recognition and prediction method of milling tool wear[D]. Wuhan: Huazhong University of Science and Technology, 2017: 34-54. | |
14 | 蔡力钢,李海波,杨聪彬,等. 基于改进VMD和自适应BSA优化LS-SVM的刀具磨损状态监测方法[J]. 北京工业大学学报, 2021, 47(1): 10-23. 10.11936/bjutxb2019070028 |
CAI L G, LI H B, YANG C B, et al. Tool wear state recognition model based on modified variational mode decomposition and LS-SVM with the adaptive backtracking search algorithm[J]. Journal of Beijing University of Technology, 2021, 47(1): 10-23. 10.11936/bjutxb2019070028 | |
15 | CIVICIOGLU P. Backtracking search optimization algorithm for numerical optimization problems[J]. Applied Mathematics and Computation, 2013, 219(15): 8121-8144. 10.1016/j.amc.2013.02.017 |
16 | 王海龙. 基于自然启发的回溯搜索优化算法开采能力的改进研究[D]. 荆州:长江大学, 2018: 2-12. |
WANG H L. Modification research on the exploitation capability of the backtracking search optimization algorithm based on natural inspiration[D]. Jingzhou: Yangtze University, 2018: 2-12. | |
17 | CHEN D B, ZOU F, LU R Q, et al. Learning backtracking search optimisation algorithm and its application[J]. Information Sciences, 2017, 376: 71-94. 10.1016/j.ins.2016.10.002 |
18 | DUAN H B, LUO Q N. Adaptive backtracking search algorithm for induction magnetometer optimization[J]. IEEE Transactions on Magnetics, 2014, 50(12): No.6001206. 10.1109/tmag.2014.2342192 |
19 | 魏锋涛,史云鹏,石坤. 具有组合变异策略的回溯搜索优化算法[J]. 计算机工程与应用, 2020, 56(9): 41-47. 10.3778/j.issn.1002-8331.1904-0247 |
WEI F T, SHI Y P, SHI K. Backtracking search optimization algorithm with combined mutation strategy[J]. Computer Engineering and Applications, 2020, 56(9): 41-47. 10.3778/j.issn.1002-8331.1904-0247 | |
20 | CHEN D B, ZOU F, LU R Q, et al. Backtracking search optimization algorithm based on knowledge learning[J]. Information Sciences, 2019, 473: 202-226. 10.1016/j.ins.2018.09.039 |
21 | ZHOU J X, YE H, JI X Y, et al. An improved backtracking search algorithm for casting heat treatment charge plan problem[J]. Journal of Intelligent Manufacturing, 2019, 30(3): 1335-1350. 10.1007/s10845-017-1328-0 |
22 | 胡率,肖治华,饶强,等. 改进回溯搜索优化回声状态网络时间序列预测[J]. 计算机系统应用, 2020, 29(1): 236-243. |
HU S, XIAO Z H, RAO Q, et al. Time series forecasting based on echo state network optimized by improved backtracking search optimization algorithm[J]. Computer Systems and Applications, 2020, 29(1): 236-243. | |
23 | ZHAO W T, WANG L J, YIN Y L, et al. Sequential quadratic programming enhanced backtracking search algorithm[J]. Frontiers of Computer Science, 2018, 12(2): 316-330. 10.1007/s11704-016-5556-9 |
24 | 刘晓霞. 种群规模对遗传算法性能影响的研究[D]. 保定:华北电力大学(河北), 2010: 13-23. |
LIU X X. A research on population size impaction on the performance of genetic algorithm[D]. Baoding: North China Electric Power University, 2010: 13-23. |
[1] | LI Lina, LI Wenhao, YOU Hongxiang, WANG Yue. High efficient construction of location fingerprint database based on matrix completion improved by backtracking search optimization [J]. Journal of Computer Applications, 2017, 37(7): 1893-1899. |
[2] | ZHAI Jia HU Yiqing XU Er. Least square support vector classification-regression machine for multi-classification problems [J]. Journal of Computer Applications, 2013, 33(07): 1894-1897. |
[3] | . Least square support vector machine based on unconstrained optimization [J]. Journal of Computer Applications, 2010, 30(9): 2297-2300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||