Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (10): 3102-3110.DOI: 10.11772/j.issn.1001-9081.2021050737
Special Issue: 网络空间安全
• Cyber security • Previous Articles Next Articles
Received:
2021-05-10
Revised:
2021-09-16
Accepted:
2021-10-12
Online:
2021-09-16
Published:
2022-10-10
Contact:
Zhi LI
About author:
FAN Bin, born in 1996, M. S. candidate. His research interests include watermarking algorithm, computer vision, medical image analysis.Supported by:
樊缤, 李智, 高健
通讯作者:
李智
作者简介:
第一联系人:樊缤(1996—),男,贵州遵义人,硕士研究生,主要研究方向:水印算法、计算机视觉、医学影像分析基金资助:
CLC Number:
Bin FAN, Zhi LI, Jian GAO. Deep robust watermarking algorithm based on multiscale knowledge learning[J]. Journal of Computer Applications, 2022, 42(10): 3102-3110.
樊缤, 李智, 高健. 基于多尺度知识学习的深度鲁棒水印算法[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3102-3110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021050737
实验序号 | 多尺度采样 | 多尺度融合 | 平均PSNR/dB |
---|---|---|---|
1 | 无 | 无 | 46.12 |
2 | 有 | 无 | 46.82 |
3 | 有 | 有 | 48.17 |
Tab. 1 Influence of multiscale learning on image visual quality
实验序号 | 多尺度采样 | 多尺度融合 | 平均PSNR/dB |
---|---|---|---|
1 | 无 | 无 | 46.12 |
2 | 有 | 无 | 46.82 |
3 | 有 | 有 | 48.17 |
实验序号 | 预训练模型 | 通道数 | 平均PSNR/dB | 参数量/106 |
---|---|---|---|---|
1 | 48.17 | 25.10 | ||
2 | VGG16 | 53.44 | 27.20 | |
3 | DenseNet | 52.32 | 39.70 | |
4 | SqueezeNet | 52.25 | 13.20 | |
5 | ResNet18 | 54.20 | 45.20 | |
6 | VGG16 | 53.87 | 15.30 | |
7 | DenseNet | 52.16 | 27.80 | |
8 | SqueezeNet | 52.75 | 1.30 | |
9 | ResNet18 | 54.88 | 33.20 | |
10 | VGG16 | 54.17 | 17.10 | |
11 | DenseNet | 49.08 | 29.60 | |
12 | SqueezeNet | 50.66 | 3.10 | |
13 | ResNet18 | 50.58 | 35.00 | |
14 | VGG16 | 49.76 | 14.90 | |
15 | DenseNet | 50.28 | 27.40 | |
16 | SqueezeNet | 46.77 | 0.89 | |
17 | ResNet18 | 48.07 | 32.80 |
Tab. 2 Influence of transfer learning on image visual quality
实验序号 | 预训练模型 | 通道数 | 平均PSNR/dB | 参数量/106 |
---|---|---|---|---|
1 | 48.17 | 25.10 | ||
2 | VGG16 | 53.44 | 27.20 | |
3 | DenseNet | 52.32 | 39.70 | |
4 | SqueezeNet | 52.25 | 13.20 | |
5 | ResNet18 | 54.20 | 45.20 | |
6 | VGG16 | 53.87 | 15.30 | |
7 | DenseNet | 52.16 | 27.80 | |
8 | SqueezeNet | 52.75 | 1.30 | |
9 | ResNet18 | 54.88 | 33.20 | |
10 | VGG16 | 54.17 | 17.10 | |
11 | DenseNet | 49.08 | 29.60 | |
12 | SqueezeNet | 50.66 | 3.10 | |
13 | ResNet18 | 50.58 | 35.00 | |
14 | VGG16 | 49.76 | 14.90 | |
15 | DenseNet | 50.28 | 27.40 | |
16 | SqueezeNet | 46.77 | 0.89 | |
17 | ResNet18 | 48.07 | 32.80 |
实验序号 | 先验知识 | 平均PSNR/dB |
---|---|---|
1 | 54.88 | |
2 | 纹理 | 55.04 |
3 | 边缘 | 55.68 |
4 | 频域 | 55.14 |
5 | 纹理+边缘 | 56.43 |
6 | 纹理+频域 | 56.41 |
7 | 边缘+频域 | 57.00 |
8 | 纹理+边缘+频域 | 57.82 |
Tab. 3 Influence of prior knowledge on image visual quality
实验序号 | 先验知识 | 平均PSNR/dB |
---|---|---|
1 | 54.88 | |
2 | 纹理 | 55.04 |
3 | 边缘 | 55.68 |
4 | 频域 | 55.14 |
5 | 纹理+边缘 | 56.43 |
6 | 纹理+频域 | 56.41 |
7 | 边缘+频域 | 57.00 |
8 | 纹理+边缘+频域 | 57.82 |
1 | KHOOM M Y K, TYLER P A, SAIFUDDIN A, et al. Diffusion-Weighted Imaging (DWI) in musculoskeletal MRI: a critical review[J]. Skeletal Radiology, 2011, 40(6): 665-681. 10.1007/s00256-011-1106-6 |
2 | 李琦,颜斌,陈娜,等. 基于单向预测误差扩展的三维医学图像可逆水印算法[J]. 计算机应用, 2019, 39(2):483-487. 10.11772/j.issn.1001-9081.2018071471 |
LI Q, YAN B, CHEN N, et al. 3D medical image reversible watermarking algorithm based on unidirectional prediction error expansion[J]. Journal of Computer Applications, 2019, 39(2): 483-487. 10.11772/j.issn.1001-9081.2018071471 | |
3 | 高海波,邓小鸿,陈志刚. 基于可逆可见水印的医学图像隐私保护算法[J]. 计算机应用, 2014, 34(1):119-123, 157. 10.11772/j.issn.1001-9081.2014.01.0119 |
GAO H B, DENG X H, CHEN Z G. Medical image privacy protection scheme based on reversible visible watermarking[J]. Journal of Computer Applications, 2014, 34(1): 119-123, 157. 10.11772/j.issn.1001-9081.2014.01.0119 | |
4 | XIA Z Q, WANG X Y, ZHOU W J, et al. Color medical image lossless watermarking using chaotic system and accurate quaternion polar harmonic transforms[J]. Signal Processing, 2019, 157: 108-118. 10.1016/j.sigpro.2018.11.011 |
5 | CAVAGNINO D, LUCENTEFORTE M, GRANGETTO M. High capacity reversible data hiding and content protection for radiographic images[J]. Signal Processing, 2015, 117: 258-269. 10.1016/j.sigpro.2015.05.020 |
6 | CHEN Y, LI Z, WANG L H, et al. High-capacity reversible watermarking algorithm based on the region of interest of medical images[C]// Proceedings of the 14th IEEE International Conference on Signal Processing. Piscataway: IEEE, 2018: 1158-1162. 10.1109/icsp.2018.8652391 |
7 | QASIM A F, ASPIN R, MEZIANE F, et al. Assessment of perceptual distortion boundary through applying reversible watermarking to brain MR images[J]. Signal Processing: Image Communication, 2019, 70: 246-258. 10.1016/j.image.2018.10.007 |
8 | GAO G Y, TONG S K, XIA Z H, et al. Reversible data hiding with automatic contrast enhancement for medical images[J]. Signal Processing, 2021, 178: No.107817. 10.1016/j.sigpro.2020.107817 |
9 | YANG Y, XIAO X X, CAI X, et al. A secure and privacy preserving technique based on contrast-enhancement reversible data hiding and plaintext encryption for medical images[J]. IEEE Signal Processing Letters, 2020, 27: 256-260. 10.1109/lsp.2020.2965826 |
10 | SWARAJA K, MEENAKSHI K, KORA P. An optimized blind dual medical image watermarking framework for tamper localization and content authentication in secured telemedicine[J]. Biomedical Signal Processing and Control, 2020, 55: No.101665. 10.1016/j.bspc.2019.101665 |
11 | THAKUR S, SINGH A K, GHRERA S P, et al. Chaotic based secure watermarking approach for medical images[J]. Multimedia Tools and Applications, 2020, 79(7/8): 4263-4276. 10.1007/s11042-018-6691-0 |
12 | ANAND A, SINGH A K. An improved DWT-SVD domain watermarking for medical information security[J]. Computer Communications, 2020, 152: 72-80. 10.1016/j.comcom.2020.01.038 |
13 | 陈怡,李智,张健,等. 弥散加权图像的鲁棒水印算法研究[J]. 中国图象图形学报, 2019, 24(9): 1434-1449. 10.11834/jig.180672 |
CHEN Y, LI Z, ZHANG J, et al. Robust watermarking algorithm for diffusion weighted images[J]. Journal of Image and Graphics, 2019, 24(9): 1434-1449. 10.11834/jig.180672 | |
14 | SWARAJA K. Medical image region based watermarking for secured telemedicine[J]. Multimedia Tools and Applications, 2018, 77(21): 28249-28280. 10.1007/s11042-018-6020-7 |
15 | ZHU J R, KAPLAN R, JOHNSON J, et al. HiDDeN: hiding data with deep networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11219. Cham: Springer, 2018: 682-697. |
16 | LUO X Y, ZHAN R H, CHANG H W, et al. Distortion agnostic deep watermarking[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13545-13554. 10.1109/cvpr42600.2020.01356 |
17 | 李智,樊缤,洪波,等. 一种基于多尺度特征学习的弥散加权图像的鲁棒水印方法: CN113095987A[P]. 2021-07-09. |
LI Z, FAN B, HONG B, et al. A robust watermarking method for diffusion weighted images based on multi-scale feature learning: CN113095987A[P]. 2021-07-09. | |
18 | YEDDER H BEN, SHOKOUFI M, CARDOEN B, et al. Limited-angle diffuse optical tomography image reconstruction using deep learning[C]// Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11764. Cham: Springer, 2019: 66-74. |
19 | KNOLL K, HAMMERNIK K, KOBLER E, et al. Assessment of the generalization of learned image reconstruction and the potential for transfer learning[J]. Magnetic Resonance in Medicine, 2019, 81(1): 116-128. 10.1002/mrm.27355 |
20 | RAGHU M, ZHANG C Y, KLEINBERG J, et al. Transfusion: understanding transfer learning for medical imaging[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 3347-3357. |
21 | SHAN H M, ZHANG Y, YANG Q S, et al. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1522-1534. 10.1109/tmi.2018.2832217 |
22 | HAN Y S, YOO J, YE J C. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis[EB/OL]. (2016-11-25) [2021-09-08].. 10.1109/isbi.2017.7950457 |
23 | JIN K H, McCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509-4522. 10.1109/tip.2017.2713099 |
24 | CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698. 10.1109/tpami.1986.4767851 |
25 | OJALA T, PIETIKÄINEN M, MÄENPÄÄ T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. 10.1109/tpami.2002.1017623 |
26 | ZHOU B, ZHOU S K. DuDoRNet: learning a dual-domain recurrent network for fast MRI reconstruction with deep T1 prior[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4272-4281. 10.1109/cvpr42600.2020.00433 |
27 | BRIGHAM E O, MORROW R E. The fast Fourier transform[J]. IEEE Spectrum, 1967, 4(12): 63-70. 10.1109/mspec.1967.5217220 |
28 | SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423. 10.1002/j.1538-7305.1948.tb01338.x |
29 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
30 | LIU J J, HOU Q B, CHENG M M, et al. A simple pooling-based design for real-time salient object detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3912-3921. 10.1109/cvpr.2019.00404 |
31 | HE K H, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
32 | GHODRATI V, SHAO J X, BYDDER M, et al. MR image reconstruction using deep learning: evaluation of network structure and loss functions[J]. Quantitative Imaging in Medicine and Surgery, 2019, 9(9):1516-1527. 10.21037/qims.2019.08.10 |
33 | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. (2016-04-30) [2021-09-08].. |
34 | HUANG N, HE J S, ZHU N F. A novel method for detecting image forgery based on convolutional neural network[C]// Proceedings of the 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/ 12th IEEE International Conference on Big Data Science and Engineering. Piscataway: IEEE, 2018: 1702-1705. 10.1109/trustcom/bigdatase.2018.00255 |
35 | MAO X D, LI Q, XIE H R, et al. Least squares generative adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2813-2821. 10.1109/iccv.2017.304 |
36 | TONG Q Q, HE H J, GONG T, et al. Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings[J]. Scientific Data, 2020, 7: No.157. 10.1038/s41597-020-0493-8 |
37 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-09-08].. |
38 | HUANG G, LIU Z, L van der MAATEN, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
39 | IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[EB/OL]. (2016-11-04) [2021-09-08].. |
40 | HAHN E L. Nuclear induction due to free Larmor precession[J]. Physical Review, 1950, 77(2): 297-298. 10.1103/physrev.77.297.2 |
41 | STEJSKAL E O, TANNER J E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient[J]. The Journal of Chemical Physics, 1965, 42(1): 288-292. 10.1063/1.1695690 |
42 | LE BIHAN D, MANGIN J F, POUPON C, et al. Diffusion tensor imaging: concepts and applications[J]. Journal of Magnetic Resonance Imaging, 2001, 13(4): 534-546. 10.1002/jmri.1076 |
43 | BASSER P J, MATTIELLO J, LEBIHAN D. MR diffusion tensor spectroscopy and imaging[J]. Biophysical Journal, 1994, 66(1): 259-267. 10.1016/s0006-3495(94)80775-1 |
44 | PAJEVIC S, PIERPAOLI C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain [J]. Magnetic Resonance in Medicine, 1999, 42(3): 526-540. 10.1002/(sici)1522-2594(199909)42:3<526::aid-mrm15>3.0.co;2-j |
[1] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[2] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[5] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. |
[6] | Ying HUANG, Jiayu YANG, Jiahao JIN, Bangrui WAN. Siamese mixed information fusion algorithm for RGBT tracking [J]. Journal of Computer Applications, 2024, 44(9): 2878-2885. |
[7] | Na WANG, Lin JIANG, Yuancheng LI, Yun ZHU. Optimization of tensor virtual machine operator fusion based on graph rewriting and fusion exploration [J]. Journal of Computer Applications, 2024, 44(9): 2802-2809. |
[8] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[9] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[10] | Rui ZHANG, Pengyun ZHANG, Meirong GAO. Self-optimized dual-modal multi-channel non-deep vestibular schwannoma recognition model [J]. Journal of Computer Applications, 2024, 44(9): 2975-2982. |
[11] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
[12] | Chunxue ZHANG, Liqing QIU, Cheng’ai SUN, Caixia JING. Purchase behavior prediction model based on two-stage dynamic interest recognition [J]. Journal of Computer Applications, 2024, 44(8): 2365-2371. |
[13] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[14] | Rui SHI, Yong LI, Yanhan ZHU. Adversarial sample attack algorithm of modulation signal based on equalization of feature gradient [J]. Journal of Computer Applications, 2024, 44(8): 2521-2527. |
[15] | Fan YANG, Yao ZOU, Mingzhi ZHU, Zhenwei MA, Dawei CHENG, Changjun JIANG. Credit card fraud detection model based on graph attention Transformation neural network [J]. Journal of Computer Applications, 2024, 44(8): 2634-2642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||