| 1 | VIDAL R. Subspace clustering[J]. IEEE Signal Processing Magazine, 2011, 28(2):52-68.  10.1109/msp.2010.939739 | 
																													
																							| 2 | VIDAL R, MA Y, SASTRY S. Generalized Principal Component Analysis (GPCA)[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12):1945-1959.  10.1109/tpami.2005.244 | 
																													
																							| 3 | COSTEIRA J P, KANADE T . et al. A multibody factorization method for independently moving objects[J]. International Journal of Computer Vision, 1998, 29(3):159-179.  10.1023/a:1008000628999 | 
																													
																							| 4 | CHEN G L, LERMAN G. Spectral Curvature Clustering (SCC)[J]. International Journal of Computer Vision, 2009, 81(3):317-330.  10.1007/s11263-008-0178-9 | 
																													
																							| 5 | LU C Y, MIN H, ZHAO Z Q, et al. Robust and efficient subspace segmentation via least squares regression[C]// Proceedings of the 2012 European Conference on Computer Vision, LNCS 7578. Berlin: Springer, 2012:347-360. | 
																													
																							| 6 | McWILLIAMS B, MONTANA G. Subspace clustering of high-dimensional data: a predictive approach[J]. Data Mining and Knowledge Discovery, 2014, 28(3):736-772.  10.1007/s10618-013-0317-y | 
																													
																							| 7 | MA Y, YANG A Y, DERKSEN H, et al. Estimation of Subspace arrangements with applications in modeling and segmenting mixed data[J]. SIAM review, 2008, 50(3): 413-458.  10.1137/060655523 | 
																													
																							| 8 | ARCHAMBEAU C, DELANNAY N, VERLEYSEN M. Mixtures of robust probabilistic principal component analyzers[J]. Neurocomputing, 2008, 71(7/8/9):1274-1282.  10.1016/j.neucom.2007.11.029 | 
																													
																							| 9 | TSENG P. Nearest q-flat to m points[J]. Journal of Optimization Theory and Applications, 2000, 105(1):249-252.  10.1023/a:1004678431677 | 
																													
																							| 10 | ZHOU W M, LIU H, XU Q P, et al. Glycerol’s generalized two-dimensional correlation IR/NIR spectroscopy and its principal component analysis[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 228:No.117824.  10.1016/j.saa.2019.117824 | 
																													
																							| 11 | ELHAMIFAR E, VIDAL R. Sparse subspace clustering[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009:2790-2797.  10.1109/cvpr.2009.5206547 | 
																													
																							| 12 | LIU G C, LIN S C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):171-184.  10.1109/tpami.2012.88 | 
																													
																							| 13 | WANG Y X, XU H, LENG C L. Provable subspace clustering: when LRR meets SSC[J]. IEEE Transactions on Information Theory, 2019, 65(9):5406-5432.  10.1109/tit.2019.2915593 | 
																													
																							| 14 | LI C G, VIDAL R. Structured sparse subspace clustering: a unified optimization framework[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015:277-286.  10.1109/cvpr.2015.7298624 | 
																													
																							| 15 | PENG X, ZHANG L, YI Z. Scalable sparse subspace clustering[C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013:430-437.  10.1109/cvpr.2013.62 | 
																													
																							| 16 | PATEL V M, VIDAL R. Kernel sparse subspace clustering[C]// Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2014:2849-2853.  10.1109/icip.2014.7025576 | 
																													
																							| 17 | SOLTANOLKOTABI M, ELHAMIFAR E, CANDES E J. Robust subspace clustering[J]. Annals of Statistics, 2014, 42(2):669-699.  10.1214/13-aos1199 | 
																													
																							| 18 | XU J, XU K, KE C, et al. Reweighted sparse subspace clustering[J]. Computer Vision and Image Understanding, 2015, 138:25-37.  10.1016/j.cviu.2015.04.003 | 
																													
																							| 19 | YOU C, ROBINSON D P, VIDAL R. Scalable sparse subspace clustering by orthogonal matching pursuit[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:3918-3927.  10.1109/cvpr.2016.425 | 
																													
																							| 20 | ZHANG S C, LI Y G, CHENG D B, et al. Efficient subspace clustering based on self-representation and grouping effect[J]. Neural Computing and Applications, 2018, 29(1):51-59.  10.1007/s00521-016-2353-1 | 
																													
																							| 21 | XU G, YANG M, WU Q F. Sparse subspace clustering with low-rank transformation[J]. Neural Computing and Applications, 2019, 31(7):3141-3154.  10.1007/s00521-017-3259-2 | 
																													
																							| 22 | CHEN Y, LI C G, YOU C. Stochastic sparse subspace clustering[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:4154-4163.  10.1109/cvpr42600.2020.00421 | 
																													
																							| 23 | ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11):2765-2781.  10.1109/tpami.2013.57 | 
																													
																							| 24 | SOLTANOLKOTABI M, CANDÉS E J. A geometric analysis of subspace clustering with outliers[J]. Annals of Statistics, 2012, 40(4):2195-2238.  10.1214/12-aos1034 | 
																													
																							| 25 | YOU C, VIDAL R. Geometric conditions for subspace-sparse recovery[C]// Proceedings of 32nd International Conference on Machine Learning. New York: JMLR.org, 2015:1585-1593.  10.1109/cvpr.2016.425 | 
																													
																							| 26 | BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1):1-122. | 
																													
																							| 27 | 刘紫涵,吴鹏海,吴艳兰. 三种谱聚类算法及其应用研究[J]. 计算机应用研究, 2017, 34(4):1026-1031.  10.3969/j.issn.1001-3695.2017.04.016 | 
																													
																							|  | LIU Z H, WU P H, WU Y L. Research of three spectral clustering algorithms and its application[J]. Application Research of Computers, 2017, 34(4):1026-1031.  10.3969/j.issn.1001-3695.2017.04.016 | 
																													
																							| 28 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15:1929-1958. | 
																													
																							| 29 | WAN L, ZEILER M, ZHANG S X, et al. Regularization of neural networks using DropConnect[C]// Proceedings of 30th International Conference on Machine Learning. New York: JMLR.org, 2014:1058-1066. | 
																													
																							| 30 | WAGER S, WANG S D, LIANG P. Dropout training as adaptive regularization[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013:351-359. | 
																													
																							| 31 | BALDI P, SADOWSKI P. Understanding dropout[M]// BURGES C J C, BOTTOU L, WELLING M, et al. Advances in Neural Information Processing Systems 26. La Jolla, CA: Neural Information Processing Systems Foundation, 2013:2814-2822. | 
																													
																							| 32 | GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016:1050-1059. | 
																													
																							| 33 | WATSON G A. Characterization of the subdifferential of some matrix norms[J]. Linear Algebra and its Applications, 1992, 170:33-45.  10.1016/0024-3795(92)90407-2 |