Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (4): 1029-1035.DOI: 10.11772/j.issn.1001-9081.2021071277
Special Issue: CCF第36届中国计算机应用大会 (CCF NCCA 2021)
• The 36 CCF National Conference of Computer Applications (CCF NCCA 2020) • Previous Articles Next Articles
Jing QIN1, Fali SUN2, Fang HUI3, Zumin WANG2(), Bing GAO2, Changqing JI2,4
Received:
2021-07-16
Revised:
2021-08-11
Accepted:
2021-08-27
Online:
2022-04-15
Published:
2022-04-10
Contact:
Zumin WANG
About author:
QIN Jing, born in 1981, Ph. D., associate professor. Her research interests include signal processing, big data analysis.Supported by:
秦静1, 孙法莉2, HUI Fang3, 汪祖民2(), 高兵2, 季长清2,4
通讯作者:
汪祖民
作者简介:
秦静(1981—),女,甘肃张掖人,副教授,博士,CCF会员,主要研究方向:信号处理、大数据分析基金资助:
CLC Number:
Jing QIN, Fali SUN, Fang HUI, Zumin WANG, Bing GAO, Changqing JI. Review of key technology and application of wearable electroencephalogram device[J]. Journal of Computer Applications, 2022, 42(4): 1029-1035.
秦静, 孙法莉, HUI Fang, 汪祖民, 高兵, 季长清. 可穿戴脑电图设备关键技术及其应用综述[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1029-1035.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071277
产品名称 | 电极类型 | 通道数 | 数据传输类型 | 质量/g |
---|---|---|---|---|
MindWave | 干 | 1 | 蓝牙 | 90 |
EPOC(+) | 干 | 5~14 | 蓝牙 | 125 |
Jellyfish | 干 | 4 | WiFi | 95 |
Muse | 干 | 4~7 | 蓝牙 | 41 |
Smarting | 湿 | 24 | 蓝牙 | 60 |
LiveAmp | 干 | 8~64 | 蓝牙 | 30 |
Tab. 1 Comparison of parameters of wearable EEG devices
产品名称 | 电极类型 | 通道数 | 数据传输类型 | 质量/g |
---|---|---|---|---|
MindWave | 干 | 1 | 蓝牙 | 90 |
EPOC(+) | 干 | 5~14 | 蓝牙 | 125 |
Jellyfish | 干 | 4 | WiFi | 95 |
Muse | 干 | 4~7 | 蓝牙 | 41 |
Smarting | 湿 | 24 | 蓝牙 | 60 |
LiveAmp | 干 | 8~64 | 蓝牙 | 30 |
方法 | 优点 | 缺点 |
---|---|---|
自回归[ | 高分辨率,频谱损失小 | 不适用于固定信号 |
主成分分析[ | 正交变换,不丢失数据 | 无法处理复杂数据集 |
独立分量分析[ | 线性变换,计算量小 | 提取的特征可能相关 |
快速傅里叶变换[ | 通过时域转化到频域提取特征 | 损失时间域信息,对信号敏感 |
短时傅里叶变换[ | 能提取时频域特征 | 窗口大小难确定 |
小波变换[ | 时频特征,适用于非平稳信号 | 适用与少通道脑电信号 |
共空间模式法[ | 能提取信号的空间相关性信息 | 需要多通道分析,易受噪声影响 |
样本熵法[ | 运算量小,算法稳定 | 无法反映时频信息 |
功率谱分析[ | 算法简单,易操作 | 无法描述信号的非线性信息 |
Tab. 2 Comparison of advantages and disadvantages of different EEG signal feature extraction methods
方法 | 优点 | 缺点 |
---|---|---|
自回归[ | 高分辨率,频谱损失小 | 不适用于固定信号 |
主成分分析[ | 正交变换,不丢失数据 | 无法处理复杂数据集 |
独立分量分析[ | 线性变换,计算量小 | 提取的特征可能相关 |
快速傅里叶变换[ | 通过时域转化到频域提取特征 | 损失时间域信息,对信号敏感 |
短时傅里叶变换[ | 能提取时频域特征 | 窗口大小难确定 |
小波变换[ | 时频特征,适用于非平稳信号 | 适用与少通道脑电信号 |
共空间模式法[ | 能提取信号的空间相关性信息 | 需要多通道分析,易受噪声影响 |
样本熵法[ | 运算量小,算法稳定 | 无法反映时频信息 |
功率谱分析[ | 算法简单,易操作 | 无法描述信号的非线性信息 |
种类 | 分类器 | 优点 | 缺点 |
---|---|---|---|
机 器 学 习 | K近邻[ | 易实现,新数据可随意加入 | 不适用大数据量样本;K值需预设定,无自适应 |
支持向量机[ | 适用小样本数据集;对数据不敏感,模型泛化能力强 | 不适用于大量数据和多分类问题;对参数和核函数选择敏感 | |
随机森林[ | 准确性高;可处理高维数据、对数据集的适应能力强 | 树多时,训练时空间开销大;噪声大时,模型容易过拟合 | |
线性判别分析[ | 计算要求低,适合于在线脑机接口系统;既可降维, 又可分类 | 不适用于处理非线性数据;可能过度拟合数据 | |
深 度 学 习 | 多层感知机[ | 网络结构相较简单 | 隐含节点个数难确定;容易陷入局部极值 |
卷积神经网络[ | 局部感知细化特征提取,权值共享减少网络参数; 池化层降低数据维度 | 需要大样本量和反复调参 | |
循环神经网络[ | 具有记忆功能;用于时序数据处理 | 无法长期依赖,甚至导致梯度消失或爆炸 | |
长短期记忆网络[ | 解决长期依赖问题;可输入不定长时序数据 | 并行处理上存在劣势 |
Tab. 3 Comparison of advantages and disadvantages of different wearable EEG device classifier
种类 | 分类器 | 优点 | 缺点 |
---|---|---|---|
机 器 学 习 | K近邻[ | 易实现,新数据可随意加入 | 不适用大数据量样本;K值需预设定,无自适应 |
支持向量机[ | 适用小样本数据集;对数据不敏感,模型泛化能力强 | 不适用于大量数据和多分类问题;对参数和核函数选择敏感 | |
随机森林[ | 准确性高;可处理高维数据、对数据集的适应能力强 | 树多时,训练时空间开销大;噪声大时,模型容易过拟合 | |
线性判别分析[ | 计算要求低,适合于在线脑机接口系统;既可降维, 又可分类 | 不适用于处理非线性数据;可能过度拟合数据 | |
深 度 学 习 | 多层感知机[ | 网络结构相较简单 | 隐含节点个数难确定;容易陷入局部极值 |
卷积神经网络[ | 局部感知细化特征提取,权值共享减少网络参数; 池化层降低数据维度 | 需要大样本量和反复调参 | |
循环神经网络[ | 具有记忆功能;用于时序数据处理 | 无法长期依赖,甚至导致梯度消失或爆炸 | |
长短期记忆网络[ | 解决长期依赖问题;可输入不定长时序数据 | 并行处理上存在劣势 |
1 | RAMAKURI S K, GHOSH S, GUPTA B. Behaviour state analysis through brain computer interface using wearable EEG devices: a review[J]. Electronic Government, an International Journal, 2017, 13(4): 377-390. 10.1504/EG.2017.087994 |
2 | 孔朝红,刘煜敏,陶枫,等. 脑电图在偏头痛患者中的诊断价值[J]. 临床与病理杂志, 2017, 37(6):1216-1219. 10.3978/j.issn.2095-6959.2017.06.024 |
KONG Z H, LIU Y M, TAO F, et al. Value of electroencephalogram in the diagnosis of migraine patients[J]. Journal of Clinical and Pathological Research, 2017, 37(6): 1216-1219. 10.3978/j.issn.2095-6959.2017.06.024 | |
3 | CARVALHO D, MENDES T, DIAS A I, et al. Interictal spike quantification in Continuous Spike-Wave of Sleep (CSWS): clinical usefulness of a wearable EEG device[J]. Epilepsy and Behavior, 2020, 104 (Pt A): No.106902. 10.1016/j.yebeh.2020.106902 |
4 | 马思远,樊星,乔慧. 额颞叶脑胶质瘤病人术前脑电图特征的量化分析研究[J]. 中国微侵袭神经外科杂志, 2020, 25(9):397-400. |
MA S Y, FAN X, QIAO H. Quantitative analysis of electroencephalogram characteristics in patients with frontotemporal gliomas[J]. Chinese Journal of Minimally Invasive Neurosurgery, 2020, 25(9):397-400. | |
5 | NASEER N, AYAZ H, DEHAIS F. Portable and wearable brain technologies for neuroenhancement and neurorehabilitation[J]. BioMed Research International, 2018, 2018: No.1806374. 10.1155/2018/1806374 |
6 | KANNAN R, ALI S S A, FARAH A, et al. Smart wearable EEG sensor[J]. Procedia Computer Science, 2017, 105: 138-143. 10.1016/j.procs.2017.01.193 |
7 | WAI A A P, HE D J, HUAT N S. IoT-enabled multimodal sensing headwear system[C]// Proceedings of the IEEE 4th World Forum on Internet of Things. Piscataway: IEEE, 2018:286-290. 10.1109/wf-iot.2018.8355103 |
8 | CASSON A J, SMITH S, DUNCAN J S, et al. Wearable EEG: what is it, why is it needed and what does it entail?[C]// Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2008: 5867-5870. 10.1109/iembs.2008.4650549 |
9 | LÜHMANN A VON, SOEKADAR S, MÜLLER K R, et al. Headgear for mobile neurotechnology: looking into alter EEG and NIRS probes[C/OL]// Proceedings of the 7th International Conference on Graz Brain-Computer Interface Conference. [2021-05-23].. |
10 | XING X, PEI W H, WANG Y J, et al. Assessing a novel micro-seepage electrode with flexible and elastic tips for wearable EEG acquisition[J]. Sensors and Actuators A: Physical, 2017, 270:262-270. 10.1016/j.sna.2017.12.048 |
11 | SRINIVASA M G, PANDIAN P S. Dry electrodes for bio-potential measurement in wearable systems[C]// Proceedings of the 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology. Piscataway: IEEE, 2017: 270-276. 10.1109/rteict.2017.8256600 |
12 | HSU T R, HSU T Y, HUANG W H, et al. Wearable electroencephalogram signal detection with dry metal electrodes[C]// Proceedings of the 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference. Piscataway: IEEE, 2017: 311-314. 10.1109/impact.2017.8255960 |
13 | FLEURY A, ALIZADEH M, STEFAN G, et al. Toward fabric-based EEG access technologies: seamless knit electrodes for a portable brain-computer interface[C]// Proceedings of the 2017 IEEE Life Sciences Conference. Piscataway: IEEE, 2017: 35-38. 10.1109/lsc.2017.8268137 |
14 | GAO K P, YANG H J, WANG X L, et al. Soft pin-shaped dry electrode with bristles for EEG signal measurements[J]. Sensors and Actuators A: Physical, 2018, 283: 348-361. 10.1016/j.sna.2018.09.045 |
15 | 殷灿. 基于PDA/Pt-TiO2纳米管阵列的EEG干电极及其SSVEP-BCI应用[D]. 天津:天津理工大学, 2021:17-46. 10.5954/icarob.2021.os13-10 |
YIN C. Preparation of polydopamine/Pt-TiO2 nanotube array-based EEG dry electrode for SSVEP-BCI applications[D]. Tianjin: Tianjin University of Technology, 2021:17-46. 10.5954/icarob.2021.os13-10 | |
16 | ASOGWA C O, LIBESON V, LAI D T H. Conductive textile as wearable electrode in intrabody communications[J]. Medical Devices and Sensors, 2018, 1(3): No.e10016. |
17 | SHU L, XU T Y, XU X M. Multilayer sweat-absorbable textile electrode for EEG measurement in forehead site[J]. IEEE Sensors Journal, 2019, 19(15): 5995-6005. 10.1109/jsen.2019.2912667 |
18 | 祝伟仝,吕林洋,王鑫,等. 便携式柔性石墨烯电极脑电采集系统[J]. 现代电子技术, 2020, 43(12):22-26. |
ZHU W T, LYU L Y, WANG X, et al. Portable EEG acquisition system with flexible graphene electrode[J]. Modern Electronics Technique 2020, 43(12):22-26. | |
19 | ZHAO Z C, IVANOV K, LUBICH L, et al. Signal quality and electrode-skin impedance evaluation in the context of wearable electroencephalographic systems[C]// Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2018: 4965-4968. 10.1109/embc.2018.8513457 |
20 | BLEICHNER M G, Concealed DEBENER S., ear-centered EEG acquisition unobtrusive : cEEGrids for transparent EEG[J]. Frontiers in Human Neuroscience, 2017, 11: No.163. 10.3389/fnhum.2017.00163 |
21 | JIANG Y B, LEE H, LI G, et al. High performance wearable two-channel hybrid BCI system with eye closure assist[C]// Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2016: 5869-5872. 10.1109/embc.2016.7592063 |
22 | ZIBRANDTSEN I C, KIDMOSE P, CHRISTENSEN C B, et al. Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy-a comparison with scalp EEG monitoring[J]. Clinical Neurophysiology, 2017, 128(12): 2454-2461. 10.1016/j.clinph.2017.09.115 |
23 | VALENTIN O, DUCHARME M, CRÉTOT-RICHERT G, et al. Validation and benchmarking of a wearable EEG acquisition platform for real-world applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(1): 103-111. |
24 | MAHDID Y, LEE U, BLAIN-MORAES S. Assessing the quality of wearable EEG systems using functional connectivity[J]. IEEE Access, 2020, 8: 193214-193225. 10.1109/access.2020.3033472 |
25 | JEBELLI H, HWANG S, LEE S. EEG signal-processing framework to obtain high-quality brain waves from an off-the-shelf wearable EEG device[J]. Journal of Computing in Civil Engineering, 2018, 32(1): No.04017070. 10.1061/(asce)cp.1943-5487.0000719 |
26 | JEBELLI H, CHOI B, LEE S. Application of wearable biosensors to construction sites. I: assessing workers’ stress[J]. Journal of Construction Engineering and Management, 2019, 145(12): No.04019079. 10.1061/(asce)co.1943-7862.0001729 |
27 | 曲洪权,单一平,刘欲哲,等. 脑电信号中独立分量特征提取与脑力负荷分类[J]. 科学技术与工程, 2020, 20(28):11499-11504. 10.3969/j.issn.1671-1815.2020.28.014 |
QU H Q, SHAN Y P, LIU Y Z, et al. Extraction of independent component features in electroencephalogram signals and classification of mental workload[J]. Science Technology and Engineering, 2020, 20(28):11499-11504. 10.3969/j.issn.1671-1815.2020.28.014 | |
28 | MAJMUDAR C A, MORSHED B I. Autonomous OA removal in real-time from single channel EEG data on a wearable device using a hybrid algebraic-wavelet algorithm[J]. ACM Transactions on Embedded Computing Systems, 2017, 16(1): No.20. |
29 | CHAUDHARY M, MUKHOPADHYAY S, LITOIU M, et al. Understanding brain dynamics for color perception using wearable EEG headband[C]// Proceedings of the 30th Annual International Conference on Computer Science and Software Engineering. Armonk, NY: IBM Corporation, 2020:13-22. |
30 | MAHAJAN R, MORSHED B I. Sample Entropy enhanced wavelet-ICA denoising technique for eye blink artifact removal from scalp EEG dataset[C]// Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering. Piscataway: IEEE, 2013: 1394-1397. 10.1109/ner.2013.6696203 |
31 | MAHAJAN R, MORSHED B I. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, kurtosis, and wavelet-ICA[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(1): 158-165. 10.1109/jbhi.2014.2333010 |
32 | 张锐,刘家俊,陈明明,等. 基于小波变换—集合经验模态分解的单通道脑电信号眼电伪迹自动去除研究[J]. 生物医学工程学杂志, 2021, 38(3):473-482. 10.7507/1001-5515.202012017 |
ZHANG R, LIU J J, CHENG M M, et al. Research on automatic removal of ocular artifacts from single channel electroence-phalogram signals based on wavelet transform and ensemble empirical mode decomposition[J]. Journal of Biomedical Engineering, 2021, 38(3): 473-482. 10.7507/1001-5515.202012017 | |
33 | 姚粤汉. 脑电信号的伪迹去除与情绪识别研究[D]. 广州:华南理工大学, 2020:25-43. |
YAO Y H. Study on EEG artifacts removal and emotion recognition[J]. Guangzhou: South China University of Technology, 2020:25-43. | |
34 | 陈妮,覃玉荣,孙鹏飞. 基于脑电自回归预测的实时相位估计方法[J]. 电子测量与仪器学报, 2020, 34(6):183-190. |
CHEN N, QIN Y R, SUN P F. Real time phase estimation method based on autoregressive prediction of EEG[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(6):183-190. | |
35 | ARPAIA P, MOCCALDI N, PREVETE R, et al. A wearable EEG instrument for real-time frontal asymmetry monitoring in worker stress analysis[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 8335-8343. 10.1109/tim.2020.2988744 |
36 | LI M Y, CHEN W Z. FFT-based deep feature learning method for EEG classification[J]. Biomedical Signal Processing and Control, 2021, 66: No.102492. 10.1016/j.bspc.2021.102492 |
37 | RAMOS-AGUILAR R, OLVERA-LÓPEZ J A, OLMOS-PINEDA I, et al. Feature extraction from EEG spectrograms for epileptic seizure detection[J]. Pattern Recognition Letters, 2020, 133: 202-209. 10.1016/j.patrec.2020.03.006 |
38 | 王玉潇,姜威,刘治,等. 基于共空间模式算法和支持向量机二重分类的癫痫发病预测[J]. 生物医学工程学杂志, 2021, 38(1):39-46. 10.7507/1001-5515.201911042 |
WANG Y X, JIANG W, LIU Z, et al. Prediction of epilepsy based on common spatial model algorithm and support vector machine double classification[J]. Journal of Biomedical Engineering, 2021, 38(1):39-46. 10.7507/1001-5515.201911042 | |
39 | ZHANG Q Z, DING J, KONG W Z, et al. Epilepsy prediction through optimized multidimensional sample entropy and Bi-LSTM[J]. Biomedical Signal Processing and Control, 2021, 64: No.102293. 10.1016/j.bspc.2020.102293 |
40 | ARSALAN A, MAJID M. A study on multi-class anxiety detection using wearable EEG headband[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 6: 1-11. 10.1007/s12652-021-03249-y |
41 | CHAVARRIAGA R, FRIED-OKEN M, KLEIH S, et al. Heading for new shores! overcoming pitfalls in BCI design[J]. Brain-Computer Interfaces, 2017, 4(1/2): 60-73. 10.1080/2326263x.2016.1263916 |
42 | ZHU M K, CHEN J F, LI H B, et al. Vehicle driver drowsiness detection method using wearable EEG based on convolution neural network[J]. Neural Computing and Applications, 2021, 33(20): 13965-13980. 10.1007/s00521-021-06038-y |
43 | ATTIA M, HETTIARACHCHI I, HOSSNY M, et al. A time domain classification of steady-state visual evoked potentials using deep recurrent-convolutional neural networks[C]// Proceedings of the IEEE 15th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2018: 766-769. 10.1109/isbi.2018.8363685 |
44 | HEFRON R G, BORGHETTI B J, CHRISTENSEN J C, et al. Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation[J]. Pattern Recognition Letters, 2017, 94: 96-104. 10.1016/j.patrec.2017.05.020 |
45 | MARTINS I P, WESTERFIELD M, LOPES M, et al. Brain state monitoring for the future prediction of migraine attacks[J]. Cephalalgia, 2020, 40(3): 255-265. 10.1177/0333102419877660 |
46 | CAO Z H, LIN C T, LAI K L, et al. Extraction of SSVEPs-based inherent fuzzy entropy using a wearable headband EEG in migraine patients[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(1): 14-27. 10.1109/tfuzz.2019.2905823 |
47 | FÜRBASS F, KAMPUSCH S, KANIUSAS E, et al. Automatic multimodal detection for long-term seizure documentation in epilepsy[J]. Clinical Neurophysiology, 2017, 128(8): 1466-1472. 10.1016/j.clinph.2017.05.013 |
48 | SOPIC D, AMINIFAR A, ATIENZA D. e-Glass: a wearable system for real-time detection of epileptic seizures[C]// Proceedings of the 2018 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2018: 1-5. 10.1109/iscas.2018.8351728 |
49 | TAUFIQUE Z, ZHU B Z, COPPOLA G, et al. A low power multi-class migraine detection processor based on somatosensory evoked potentials[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2021, 68(5): 1720-1724. 10.1109/TCSII.2021.3066389 |
50 | BILLECI L, TONACCI A, TARTARISCO G, et al. An integrated approach for the monitoring of brain and autonomic response of children with autism spectrum disorders during treatment by wearable technologies[J]. Frontiers in Neuroscience, 2016, 10: No.276. 10.3389/fnins.2016.00276 |
51 | ROHANI D A, FAURHOLT-JEPSEN M, KESSING L V, et al. Correlations between objective behavioral features collected from mobile and wearable devices and depressive mood symptoms in patients with affective disorders: systematic review[J]. JMIR mHealth and uHealth, 2018, 6(8): No.e165. 10.2196/mhealth.9691 |
52 | DEHZANGI O, FAROOQ M. Wearable Brain Computer Interface (BCI) to assist communication in the Intensive Care Unit (ICU)[C]// Proceedings of the 2018 IEEE International Conference on Consumer Electronics. Piscataway: IEEE, 2018: 1-4. 10.1109/icce.2018.8326188 |
53 | ROSHDY A, KORK S AL, SAID S, et al. A wearable exoskeleton rehabilitation device for paralysis ― a comprehensive study[J]. Advances in Science, Technology and Engineering Systems Journal, 2019, 4(1): 17-26. 10.25046/aj040103 |
54 | BHAGAT N A, VENKATAKRISHNAN A, ABIBULLAEV B, et al. Design and optimization of an EEG-based Brain Machine Interface (BMI) to an upper-limb exoskeleton for stroke survivors[J]. Frontiers in Neuroscience, 2016, 10: No.122. 10.3389/fnins.2016.00122 |
55 | JEBELLI H, KHALILI M M, HWANG S, et al. A supervised learning-based construction workers’ stress recognition using a wearable Electroencephalography (EEG) device[C]// Proceedings of the 2018 Construction Research Congress. Reston, VA: American Society of Civil Engineers, 2018: 40-50. 10.1061/9780784481288.005 |
56 | YOKOTA Y, TANAKA S, MIYAMOTO A, et al. Estimation of human workload from the auditory steady-state response recorded via a wearable electroencephalography system during walking[J]. Frontiers in Human Neuroscience, 2017, 11: No.314. 10.3389/fnhum.2017.00314 |
57 | HWANG S, JEBELLI H, CHOI B, et al. Measuring workers’ emotional state during construction tasks using wearable EEG[J]. Journal of Construction Engineering and Management, 2018, 144(7): No.04018050. 10.1061/(asce)co.1943-7862.0001506 |
58 | BETTI S, LOVA R M, ROVINI E, et al. Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(8): 1748-1758. 10.1109/tbme.2017.2764507 |
59 | HA U, YOO H J. An EEG-NIRS ear-module SoC for wearable drowsiness monitoring system[C]// Proceedings of the 2016 IEEE Asian Solid-State Circuits Conference. Piscataway: IEEE, 2016: 193-196. 10.1109/asscc.2016.7844168 |
60 | ZHANG Z T, LUO D Y, RASIM Y, et al. A vehicle active safety model: Vehicle speed control based on driver vigilance detection using wearable EEG and sparse representation[J]. Sensors, 2016, 16(2): No.242. 10.3390/s16020242 |
61 | KARTSCH V, BENATTI S, ROSSI D, et al. A wearable EEG-based drowsiness detection system with blink duration and alpha waves analysis[C]// Proceedings of the 8th International IEEE/EMBS Conference on Neural Engineering. Piscataway: IEEE, 2017: 251-254. 10.1109/ner.2017.8008338 |
[1] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[2] | XUE Fei YANG Youliang MENG Fanwei DONG Futao. Real-time temperature monitoring system design based on Matlab GUI serial communication [J]. Journal of Computer Applications, 2014, 34(1): 292-296. |
[3] | HU Yao XIAO Ruliang JIANG Jun HAN Jia NI Youcong DU Xin FANG Lina. Virtual machine memory of real-time monitoring and adjusting on-demand based on Xen virtual machine [J]. Journal of Computer Applications, 2013, 33(01): 254-257. |
[4] | NIU Ling GUO Yuan-bo LIU Wei. Real-time monitoring method based on improved A* algorithm for topology state of wireless mesh network [J]. Journal of Computer Applications, 2012, 32(01): 74-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||