Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (2): 536-547.DOI: 10.11772/j.issn.1001-9081.2023020209
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Junjie LI, Yumei WANG(), Zhijun LI, Yu LIU
Received:
2023-03-02
Revised:
2023-03-31
Accepted:
2023-04-03
Online:
2023-08-14
Published:
2024-02-10
Contact:
Yumei WANG
About author:
LI Junjie, born in 2001, M. S. candidate. His research interests include panoramic video transmission.Supported by:
通讯作者:
望育梅
作者简介:
李俊杰(2001—),男,江西上饶人,硕士研究生,主要研究方向:全景视频传输基金资助:
CLC Number:
Junjie LI, Yumei WANG, Zhijun LI, Yu LIU. Survey on tile-based viewport adaptive streaming scheme of panoramic video[J]. Journal of Computer Applications, 2024, 44(2): 536-547.
李俊杰, 望育梅, 李志军, 刘雨. 全景视频基于块的视口自适应传输方案综述[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 536-547.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023020209
算法类别 | 算法介绍 | 代表文献 |
---|---|---|
内容无关 (基于轨迹) | 用户的轨迹在时域上具有一定的相关性,可以建模为时间序列预测。 主要可以分为基于单用户轨迹与基于多用户轨迹 | 1)基于单用户轨迹[ 2)基于多用户轨迹[ |
内容相关 (基于内容) | 用户的视觉注意力通常集中在高显著性区域,通过显著性检测算法 可以预测用户可能的视口位置 | 基于显著性[ |
基于历史轨迹与 视频内容 | 用户的视口位置既与之前的历史轨迹相关,还与视频内容有关。 其中,视频内容包括视频的显著性以及视频内物体的轨迹 | 1)基于目标追踪与历史轨迹[ 2)基于显著性与历史轨迹[ |
Tab. 1 Overview of viewport prediction algorithms
算法类别 | 算法介绍 | 代表文献 |
---|---|---|
内容无关 (基于轨迹) | 用户的轨迹在时域上具有一定的相关性,可以建模为时间序列预测。 主要可以分为基于单用户轨迹与基于多用户轨迹 | 1)基于单用户轨迹[ 2)基于多用户轨迹[ |
内容相关 (基于内容) | 用户的视觉注意力通常集中在高显著性区域,通过显著性检测算法 可以预测用户可能的视口位置 | 基于显著性[ |
基于历史轨迹与 视频内容 | 用户的视口位置既与之前的历史轨迹相关,还与视频内容有关。 其中,视频内容包括视频的显著性以及视频内物体的轨迹 | 1)基于目标追踪与历史轨迹[ 2)基于显著性与历史轨迹[ |
算法名称 | 算法分类 | 算法概述 |
---|---|---|
Festival | Throughput-based | 监测历史网络带宽,基于20个样本数据使用调和平均算法,预测未来的可用带宽,决策对应的码率 |
MPC | Hybrid | 基于缓存器容量、调和平均算法预测得到的网络带宽选择视频码率,从而最大化用户QoE指标。算法的核心是使用MPC的预测和控制机制改善自适应码率分配的算法性能 |
BBA0 | Buffer-based | 使用当前缓存区容量选择要下载的下一个片段的码率。使用了缓存区-码率映射函数表示缓存区大小与视频码率之间的离散双射关系 |
Elastic | Hybrid | 基于反馈控制理论,对可用带宽更精确地预测,进而生成更好的码率决策方案 |
BOLA | Buffer-based | 基于当前缓存区的容量进行码率决策,更新上一个chunk的码率,将自适应码率分配建模为效用函数最大化求解问题,使用Lyapunov优化方法进行求解,可以适应不同的观看设备、视频种类与网络条件等 |
Pensieve | Learning-based | 首次提出基于Actor-Critic模型进行码率决策,接收播放器状态信息,学习码率分配方案 |
Tab. 2 Overview of bit rate allocation algorithms
算法名称 | 算法分类 | 算法概述 |
---|---|---|
Festival | Throughput-based | 监测历史网络带宽,基于20个样本数据使用调和平均算法,预测未来的可用带宽,决策对应的码率 |
MPC | Hybrid | 基于缓存器容量、调和平均算法预测得到的网络带宽选择视频码率,从而最大化用户QoE指标。算法的核心是使用MPC的预测和控制机制改善自适应码率分配的算法性能 |
BBA0 | Buffer-based | 使用当前缓存区容量选择要下载的下一个片段的码率。使用了缓存区-码率映射函数表示缓存区大小与视频码率之间的离散双射关系 |
Elastic | Hybrid | 基于反馈控制理论,对可用带宽更精确地预测,进而生成更好的码率决策方案 |
BOLA | Buffer-based | 基于当前缓存区的容量进行码率决策,更新上一个chunk的码率,将自适应码率分配建模为效用函数最大化求解问题,使用Lyapunov优化方法进行求解,可以适应不同的观看设备、视频种类与网络条件等 |
Pensieve | Learning-based | 首次提出基于Actor-Critic模型进行码率决策,接收播放器状态信息,学习码率分配方案 |
1 | 金学骥.基于OMAF的全景视频传输机制分析[J].电子技术与软件工程,2022(8):184-188. 10.3724/sp.j.1089.2022.18895 |
JIN X J. Analysis of panoramic video transmission mechanism based on OMAF[J]. Electronic Technology & Software Engineering, 2022(8):184-188. 10.3724/sp.j.1089.2022.18895 | |
2 | Grand View Research. Virtual Reality (VR) market size, share & trends analysis report, 2022—2030[R/OL].[2023-02-28]. . |
3 | Fortune Business Insights. Virtual reality global market analysis, insights and forecast, 2022—2029[R/OL].[2023-02-28].. |
4 | 缪辰启, 罗铖.全景视频视口预测方法综述[J].电视技术,2022, 46(2): 10-13. |
MIAO C Q, LUO Y. A overview of panoramic video viewport prediction methods[J]. Video Engineering, 2022, 46(2): 10-13. | |
5 | OZCINAR C, CABRERA J, SMOLIC A. Visual attention-aware omnidirectional video streaming using optimal tiles for virtual reality[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9(1): 217-230. 10.1109/jetcas.2019.2895096 |
6 | WONG E S, WAHAB N H A, SAEED F, et al. 360-Degree video bandwidth reduction: technique and approaches comprehensive review[J]. Applied Sciences, 2022, 12(15): 7581. 10.3390/app12157581 |
7 | XIAO M, WANG S, ZHOU C, et al. MiniView layout for bandwidth-efficient 360-degree video[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 914-922. 10.1145/3240508.3240705 |
8 | CHIARIOTTI F. A survey on 360-degree video: coding, quality of experience and streaming[J]. Computer Communications, 2021, 177: 133-155. 10.1016/j.comcom.2021.06.029 |
9 | BIATEK T, HAMIDOUCHE W, P-L CABARAT, et al. Scalable video coding for backward-compatible 360° video delivery over broadcast networks[J]. IEEE Transactions on Broadcasting, 2020, 66(2): 322-332. 10.1109/tbc.2019.2941073 |
10 | YAO R, HEATH T, DAVIES A, et al. Oculus VR best practices guide[J]. Oculus VR, 2014, 4: 27-35. |
11 | BAO Y, WU H, ZHANG T, et al. Shooting a moving target: motion-prediction-based transmission for 360-degree videos[C]// Proceedings of the 2016 IEEE International Conference on Big Data. Piscataway: IEEE, 2016: 1161-1170. 10.1109/bigdata.2016.7840720 |
12 | PARK S, BHATTACHARYA A, YANG Z, et al. Mosaic: advancing user quality of experience in 360-degree video streaming with machine learning[J]. IEEE Transactions on Network and Service Management, 2021, 18(1): 1000-1015. 10.1109/tnsm.2021.3053183 |
13 | NGUYEN T C, YUN J-H. Predictive tile selection for 360-degree VR video streaming in bandwidth-limited networks[J]. IEEE Communications Letters, 2018, 22(9): 1858-1861. 10.1109/lcomm.2018.2848915 |
14 | HOSSEINI M, SWAMINATHAN V. Adaptive 360 VR video streaming: divide and conquer[C]// Proceedings of the 2016 IEEE International Symposium on Multimedia. Piscataway: IEEE, 2016: 107-110. 10.1109/ism.2016.0028 |
15 | MANGIANTE S, KLAS G, NAVON A, et al. VR is on the edge: how to deliver 360 videos in mobile networks[C]// Proceedings of the 2017 Workshop on Virtual Reality and Augmented Reality Network. New York: ACM, 2017: 30-35. 10.1145/3097895.3097901 |
16 | YADAV P K, OOI W T. Tile rate allocation for 360-degree tiled adaptive video streaming[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3724-3733. 10.1145/3394171.3413550 |
17 | HANNUKSELA M M, WANG Y-K, HOURUNRANTA A. An overview of the OMAF standard for 360° video[C]// Proceedings of the 2019 Data Compression Conference. Piscataway: IEEE, 2019: 418-427. 10.1109/dcc.2019.00050 |
18 | SALOMON D. Transformations and Projections in Computer Graphics[M]. London: Springer, 2006. 10.1007/978-1-84628-620-9 |
19 | LI L, LI Z, BUDAGAVI M, et al. Projection based advanced motion model for cubic mapping for 360-degree video[C]// Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 1427-1431. 10.1109/icip.2017.8296517 |
20 | COBAN M, AUWERA G V, KARCZEWICZ M. VR/360 video truncated square pyramid geometry for OMAF: ISO/IEC [S]. Geneva: ISO, 2016. |
21 | 郭宗明, 班怡璇, 谢澜. 虚拟现实视频传输架构和关键技术[J]. 中兴通讯技术, 2017, 23(6): 19-23. 10.3969/j.issn.1009-6868.2017.06.005 |
GUO Z M, BAN Y X, XIE L.Architecture and key technologies of virtual reality video transmission and streaming[J]. ZTE Technology Journal, 2017, 23(6): 19-23. 10.3969/j.issn.1009-6868.2017.06.005 | |
22 | GÓMEZ D, NÚÑEZ J A, FRAILE I, et al. TiCMP: a lightweight and efficient tiled cubemap projection strategy for immersive videos in Web-based players[C]// Proceedings of the 28th ACM SIGMM Workshop on Network and Operating Systems Support for Digital Audio and Video. New York: ACM, 2018: 1-6. 10.1145/3210445.3210456 |
23 | POURAZAD M T, DOUTRE C, AZIMI M, et al. HEVC: the new gold standard for video compression: how does HEVC compare with H. 264/AVC?[J]. IEEE Consumer Electronics Magazine, 2012, 1(3): 36-46. 10.1109/mce.2012.2192754 |
24 | BAUERMANN I, MIELKE M, STEINBACH E. H.264 based coding of omnidirectional video[M]// Computer Vision and Graphics. Dordrecht: Springer, 2006: 209-215. |
25 | YE Y, BOYCE J M, HANHART P. Omnidirectional 360° video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(5): 1241-1252. 10.1109/tcsvt.2019.2953827 |
26 | SODAGAR I. The MPEG-DASH standard for multimedia streaming over the Internet[J]. IEEE Multimedia, 2011, 18(4): 62-67. 10.1109/mmul.2011.71 |
27 | 叶成英, 李建微, 陈思喜. VR 全景视频传输研究进展[J]. 计算机应用研究, 2022, 39(6): 1601-1607, 1621. |
YE C Y, LI J W, CHEN S X. Research progress of VR panoramic video transmission[J]. Application Research of Computers, 2022, 39(6): 1601-1607, 1621. | |
28 | ALMQUIST M, ALMQUIST V, KRISHNAMOORTHI V, et al. The prefetch aggressiveness tradeoff in 360 video streaming[C]// Proceedings of the 9th ACM Multimedia Systems Conference. New York: ACM, 2018: 258-269. 10.1145/3204949.3204970 |
29 | MAVLANKAR A, GIROD B. Pre-fetching based on video analysis for interactive region-of-interest streaming of soccer sequences[C]// Proceedings of the 2009 16th IEEE International Conference on Image Processing. Piscataway: IEEE, 2009: 3061-3064. 10.1109/icip.2009.5414201 |
30 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. 10.1109/tip.2003.819861 |
31 | SKUPIN R, SANCHEZ Y, WANG Y-K, et al. Standardization status of 360 degree video coding and delivery[C]// Proceedings of the 2017 IEEE Visual Communications and Image Processing. Piscataway: IEEE, 2017: 1-4. 10.1109/vcip.2017.8305083 |
32 | SUN Y, LU A, YU L. Weighted-to-spherically-uniform quality evaluation for omnidirectional video[J]. IEEE Signal Processing Letters, 2017, 24(9): 1408-1412. |
33 | ZAKHARCHENKO V, CHOI K P, PARK J H. Quality metric for spherical panoramic video[C]// Proceedings of the SPIE 9970, Optics and Photonics for Information Processing X. [S.l.]: SPIE, 2016: 57-65. 10.1117/12.2235885 |
34 | TRAN H T T, NGOC N P, BUI C M, et al. An evaluation of quality metrics for 360 videos[C]// Proceedings of the 2017 9th International Conference on Ubiquitous and Future Networks. Piscataway: IEEE, 2017: 7-11. 10.1109/icufn.2017.7993736 |
35 | ZHOU Y, YU M, MA H, et al. Weighted-to-spherically-uniform SSIM objective quality evaluation for panoramic video[C]// Proceedings of the 2018 14th IEEE International Conference on Signal Processing. Piscataway: IEEE, 2018: 54-57. 10.1109/icsp.2018.8652269 |
36 | CHEN S, ZHANG Y, LI Y, et al. Spherical structural similarity index for objective omnidirectional video quality assessment[C]// Proceedings of the 2018 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2018: 1-6. 10.1109/icme.2018.8486584 |
37 | 杜丽娜, 卓力, 李嘉锋. 全景视频QoE评价研究进展[J]. 信号处理, 2022, 38(9): 1831-1842. 10.16798/j.issn.1003-0530.2022.09.006 |
DU L N, ZHUO L, LI J F. Survey on QoE evaluation of panoramic video[J]. Journal of Signal Processing, 2022, 38(9): 1831-1842. 10.16798/j.issn.1003-0530.2022.09.006 | |
38 | YAQOOB A, G-M MUNTEAN. A combined field-of-view prediction-assisted viewport adaptive delivery scheme for 360° videos[J]. IEEE Transactions on Broadcasting, 2021, 67(3): 746-760. 10.1109/tbc.2021.3105022 |
39 | RONDÓN M F R, SASSATELLI L, APARICIO-PARDO R, et al. TRACK: A new method from a re-examination of deep architectures for head motion prediction in 360-degree videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5681-5699. |
40 | CORBILLON X, SIMON G, DEVLIC A, et al. Viewport-adaptive navigable 360-degree video delivery[C]// Proceedings of the 2017 IEEE International Conference on Communications. Piscataway: IEEE, 2017: 1-7. 10.1109/icc.2017.7996611 |
41 | DUANMU F, KURDOGLU E, HOSSEINI S A, et al. Prioritized buffer control in two-tier 360 video streaming[C]// Proceedings of the 2017 Workshop on Virtual Reality and Augmented Reality Network. New York: ACM, 2017: 13-18. 10.1145/3097895.3097898 |
42 | QIAN F, JI L, HAN B, et al. Optimizing 360 video delivery over cellular networks[C]// Proceedings of the 5th Workshop on All Things Cellular: Operations, Applications and Challenges. New York: ACM, 2016: 1-6. 10.1145/2980055.2980056 |
43 | QIAN F, HAN B, XIAO Q, et al. Flare: practical viewport-adaptive 360-degree video streaming for mobile devices[C]// Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. New York: ACM, 2018: 99-114. 10.1145/3241539.3241565 |
44 | AZUMA R, BISHOP G. A frequency-domain analysis of head-motion prediction[C]// Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1995: 401-408. 10.1145/218380.218496 |
45 | MAVLANKAR A, GIROD B. Video streaming with interactive pan/tilt/zoom[C]// High-Quality Visual Experience. Signals and Communication Technology. Berlin: Springer, 2010: 431-455. 10.1007/978-3-642-12802-8_19 |
46 | DE LA FUENTE Y S, BHULLAR G S, SKUPIN R, et al. Delay impact on MPEG OMAF’s tile-based viewport-dependent 360° video streaming[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9(1): 18-28. 10.1109/jetcas.2019.2899516 |
47 | ZOU J, LI C, LIU C, et al. Probabilistic tile visibility-based server-side rate adaptation for adaptive 360-degree video streaming[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 14(1): 161-176. 10.1109/jstsp.2019.2956716 |
48 | FAN C-L, YEN S-C, HUANG C-Y, et al. Optimizing fixation prediction using recurrent neural networks for 360° video streaming in head-mounted virtual reality[J]. IEEE Transactions on Multimedia, 2019, 22(3): 744-759. 10.1109/tmm.2019.2931807 |
49 | BAO Y, WU H, ZHANG T, et al. Shooting a moving target: motion-prediction-based transmission for 360-degree videos[C]// Proceedings of the 2016 IEEE International Conference on Big Data . Piscataway: IEEE, 2016: 1161-1170. 10.1109/bigdata.2016.7840720 |
50 | XU M, SONG Y, WANG J, et al. Predicting head movement in panoramic video: a deep reinforcement learning approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2693-2708. 10.1109/tpami.2018.2858783 |
51 | LEE D, CHOI M, LEE J. Prediction of head movement in 360-degree videos using attention model[J]. Sensors, 2021, 21(11): 3678. 10.3390/s21113678 |
52 | XIE L, XU Z, BAN Y, et al. 360ProbDASH: improving QoE of 360 video streaming using tile-based HTTP adaptive streaming[C]// Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017: 315-323. 10.1145/3123266.3123291 |
53 | ZOU J, LI C, LIU C, et al. Probabilistic tile visibility-based server-side rate adaptation for adaptive 360-degree video streaming[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 14(1): 161-176. 10.1109/jstsp.2019.2956716 |
54 | JIANG Z, ZHANG X, XU Y, et al. Reinforcement learning based rate adaptation for 360-degree video streaming[J]. IEEE Transactions on Broadcasting, 2020, 67(2): 409-423. 10.1109/tbc.2020.3028286 |
55 | KIRULUTA A, EIZENMAN M, PASUPATHY S. Predictive head movement tracking using a Kalman filter[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1997, 27(2): 326-331. 10.1109/3477.558841 |
56 | GÜL S, BOSSE S, PODBORSKI D, et al. Kalman filter-based head motion prediction for cloud-based mixed reality[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3632-3641. 10.1145/3394171.3413699 |
57 | BAN Y, XIE L, XU Z, et al. CUB360: exploiting cross-users behaviors for viewport prediction in 360 video adaptive streaming[C]// Proceedings of the 2018 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2018: 1-6. 10.1109/icme.2018.8486606 |
58 | CHAKARESKI J, AKSU R, CORBILLON X, et al. Viewport-driven rate-distortion optimized 360° video streaming[C]// Proceedings of the 2018 IEEE International Conference on Communications. Piscataway: IEEE, 2018: 1-7. 10.1109/icc.2018.8422859 |
59 | XU Z, BAN Y, ZHANG K, et al. Tile-based QoE-driven HTTP/2 streaming system for 360 video[C]// Proceedings of the 2018 IEEE International Conference on Multimedia & Expo Workshops. Piscataway: IEEE, 2018: 1-4. 10.1109/icmew.2018.8551493 |
60 | PETRANGELI S, SIMON G, SWAMINATHAN V. Trajectory-based viewport prediction for 360-degree virtual reality videos[C]// Proceedings of the 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality. Piscataway: IEEE, 2018: 157-160. 10.1109/aivr.2018.00033 |
61 | XIE L, ZHANG X, GUO Z. CLS: a cross-user learning based system for improving qoe in 360-degree video adaptive streaming[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 564-572. 10.1145/3240508.3240556 |
62 | CORNIA M, BARALDI L, SERRA G, et al. A deep multi-level network for saliency prediction[C]// Proceedings of the 2016 23rd International Conference on Pattern Recognition. Piscataway: IEEE, 2016: 3488-3493. 10.1109/icpr.2016.7900174 |
63 | WANG W, SHEN J, GUO F, et al. Revisiting video saliency: a large-scale benchmark and a new model[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4894-4903. 10.1109/cvpr.2018.00514 |
64 | JIANG L, XU M, LIU T, et al. DeepVS: a deep learning based video saliency prediction approach[C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 625-642. 10.1007/978-3-030-01264-9_37 |
65 | CHE Z, BORJI A, ZHAI G, et al. How is gaze influenced by image transformations? dataset and model[J]. IEEE Transactions on Image Processing, 2019, 29: 2287-2300. 10.1109/tip.2019.2945857 |
66 | DE ABREU A, OZCINAR C, SMOLIC A. Look around you: saliency maps for omnidirectional images in VR applications[C]// Proceedings of the 2017 Ninth International Conference on Quality of Multimedia Experience. Piscataway: IEEE, 2017: 1-6. 10.1109/qomex.2017.7965634 |
67 | MONROY R, LUTZ S, CHALASANI T, et al. SalNet360: saliency maps for omni-directional images with CNN[J]. Signal Processing: Image Communication, 2018, 69: 26-34. 10.1016/j.image.2018.05.005 |
68 | PAN J, SAYROL E, GIRO-I-NIETO X, et al. Shallow and deep convolutional networks for saliency prediction[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 598-606. 10.1109/cvpr.2016.71 |
69 | PARK S, BHATTACHARYA A, YANG Z, et al. Advancing user quality of experience in 360-degree video streaming[C]// Proceedings of the 2019 IFIP Networking Conference. Piscataway: IEEE, 2019: 1-9. 10.23919/ifipnetworking46909.2019.8999460 |
70 | CHAO F-Y, ZHANG L, HAMIDOUCHE W, et al. Salgan360: visual saliency prediction on 360 degree images with generative adversarial networks[C]// Proceedings of the 2018 IEEE International Conference on Multimedia & Expo Workshops. Piscataway: IEEE, 2018: 1-4. 10.1109/icmew.2018.8551543 |
71 | EDER M, J-M FRAHM. Convolutions on spherical images[C]// Proceedings of the2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 1-5. 10.1109/cvpr42600.2020.01244 |
72 | ZHANG Y, DAI F, MA Y, et al. Saliency prediction network for 360° videos[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 14(1): 27-37. 10.1109/jstsp.2019.2955824 |
73 | SU Y-C, GRAUMAN K. Learning spherical convolution for fast features from 360 imagery[J]. Advances in Neural Information Processing Systems, 2017, 30: 529-539. |
74 | COORS B, CONDURACHE A P, GEIGER A. SphereNet: learning spherical representations for detection and classification in omnidirectional images[C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 525-541. 10.1007/978-3-030-01240-3_32 |
75 | LI J, HAN L, ZHANG C, et al. Spherical convolution empowered viewport prediction in 360 video multicast with limited FoV feedback[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2023, 19(1): No. 3. 10.1145/3511603 |
76 | CHOPRA L, CHAKRABORTY S, MONDAL A, et al. PARIMA: Viewport adaptive 360-degree video streaming[C]// Proceedings of the 2021 Web Conference. New York: ACM, 2021: 2379-2391. 10.1145/3442381.3450070 |
77 | TANG J, HUO Y, YANG S, et al. A viewport prediction framework for panoramic videos[C]// Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8. 10.1109/ijcnn48605.2020.9207562 |
78 | FENG X, SWAMINATHAN V, WEI S. Viewport prediction for live 360-degree mobile video streaming using user-content hybrid motion tracking[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(2): No. 43. 10.1145/3328914 |
79 | FAN C-L, LEE J, W-C LO, et al. Fixation prediction for 360 video streaming in head-mounted virtual reality[C]// Proceedings of the 27th Workshop on Network and Operating Systems Support for Digital Audio and Video. New York: ACM, 2017: 67-72. 10.1145/3083165.3083180 |
80 | XU Y, DONG Y, WU J, et al. Gaze prediction in dynamic 360° immersive videos[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5333-5342. 10.1109/cvpr.2018.00559 |
81 | NGUYEN A, YAN Z, NAHRSTEDT K. Your attention is unique: Detecting 360-degree video saliency in head-mounted display for head movement prediction[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 1190-1198. 10.1145/3240508.3240669 |
82 | LI Y, XU Y, XIE S, et al. Two-layer FoV prediction model for viewport dependent streaming of 360-degree videos[C]// Proceedings of the 2018 International Conference on Communications and Networking in China. Cham: Springer, 2019: 501-509. 10.1007/978-3-030-06161-6_49 |
83 | VAN DER HOOFT J, VEGA M T, PETRANGELI S, et al. Tile-based adaptive streaming for virtual reality video[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2019, 15(4): No. 110. 10.1145/3362101 |
84 | MAHZARI A, TAGHAVI NASRABADI A, SAMIEI A, et al. FoV-aware edge caching for adaptive 360° video streaming[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 173-181. 10.1145/3240508.3240680 |
85 | JIANG J, SEKAR V, ZHANG H. Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive[J].IEEE/ACM Transactions on Networking, 2014, 22(1): 326-340. 10.1109/tnet.2013.2291681 |
86 | YIN X, JINDAL A, SEKAR V, et al. A control-theoretic approach for dynamic adaptive video streaming over HTTP[C]// Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. New York: ACM, 2015: 325-338. 10.1145/2785956.2787486 |
87 | HUANG T-Y, JOHARI R, McKEOWN N, et al. A buffer-based approach to rate adaptation: evidence from a large video streaming service[C]// Proceedings of the 2014 ACM Conference on SIGCOMM. New York: ACM, 2014: 187-198. 10.1145/2619239.2626296 |
88 | DE CICCO L, CALDARALO V, PALMISANO V, et al. ELASTIC: a client-side controller for dynamic adaptive streaming over HTTP (DASH)[C]// Proceedings of the 2013 20th International Packet Video Workshop. Piscataway: IEEE, 2013: 1-8. 10.1109/pv.2013.6691442 |
89 | SPITERI K, URGAONKAR R, SITARAMAN R K. BOLA: near-optimal bitrate adaptation for online videos[J]. IEEE/ACM Transactions on Networking, 2020, 28(4): 1698-1711. 10.1109/tnet.2020.2996964 |
90 | MAO H, NETRAVALI R, ALIZADEH M. Neural adaptive video streaming with pensieve[C]// Proceedings of the 2017 Conference of the ACM Special Interest Group on Data Communication. New York: ACM, 2017: 197-210. 10.1145/3098822.3098843 |
91 | Encoder settings for Live 360 degree videos[EB/OL]. [2023-01-13].. |
92 | NGUYEN D V, TRAN H T T, THANG T C. An evaluation of tile selection methods for viewport-adaptive streaming of 360-degree video[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2020, 16(1): No. 8. 10.1145/3373359 |
93 | ZHOU C, XIAO M, LIU Y. ClusTile: toward minimizing bandwidth in 360-degree video streaming[C]// Proceedings of the IEEE INFOCOM 2018 — IEEE Conference on Computer Communications. Piscataway: IEEE, 2018: 962-970. 10.1109/infocom.2018.8486282 |
94 | GUAN Y, ZHENG C, ZHANG X, et al. Pano: optimizing 360 video streaming with a better understanding of quality perception[C]// Proceedings of the 2019 ACM Special Interest Group on Data Communication. New York: ACM, 2019: 394-407. 10.1145/3341302.3342063 |
95 | ZHANG Y, GUAN Y, BIAN K, et al. EPASS360: QoE-aware 360-degree video streaming over mobile devices[J]. IEEE Transactions on Mobile Computing, 2020, 20(7): 2338-2353. 10.1109/tmc.2020.2978187 |
96 | FAN C-L, YEN S-C, HUANG C-Y, et al. On the optimal encoding ladder of tiled 360° videos for head-mounted virtual reality[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31(4): 1632-1647. 10.1109/tcsvt.2020.3007288 |
97 | ZHANG H, BAN Y, GUO Z, et al. RAM360: robust adaptive multi-layer 360° video streaming with Lyapunov optimization[J]. IEEE Transactions on Multimedia, 2023, 25: 4225-4239. 10.1109/tmm.2022.3172550 |
98 | SUN L, DUANMU F, LIU Y, et al. Multi-path multi-tier 360-degree video streaming in 5G networks[C]// Proceedings of the 9th ACM Multimedia Systems Conference. New York: ACM, 2018: 162-173. 10.1145/3204949.3204978 |
99 | ZARE A, AMINLOU A, HANNUKSELA M M, et al. HEVC-compliant tile-based streaming of panoramic video for virtual reality applications[C]// Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 601-605. 10.1145/2964284.2967292 |
100 | YUAN H, ZHAO S, HOU J, et al. Spatial and temporal consistency-aware dynamic adaptive streaming for 360-degree videos[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 14(1): 177-193. 10.1109/jstsp.2019.2957981 |
101 | WEI X, ZHOU M, JIA W. Towards low-latency and high-quality adaptive 360-degree streaming[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 6326-6336. 10.1109/tii.2022.3192398 |
102 | CHEN X, WU D, AHMAD I. Optimized viewport‐adaptive 360‐degree video streaming[J]. CAAI Transactions on Intelligence Technology, 2021, 6(3): 347-359. 10.1049/cit2.12011 |
103 | ZHANG L, SUO Y, WU X, et al. TBRA: tiling and bitrate adaptation for mobile 360-degree video streaming[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 4007-4015. 10.1145/3474085.3475590 |
104 | CHEN X, TAN T, CAO G. Popularity-aware 360-degree video streaming[C]// Proceedings of the IEEE INFOCOM 2021 — IEEE Conference on Computer Communications. Piscataway: IEEE, 2021: 1-10. 10.1109/infocom42981.2021.9488856 |
105 | TU Z, ZONG T, XI X, et al. Content adaptive tiling method based on user access preference for streaming panoramic video[C]// Proceedings of the 2018 IEEE International Conference on Consumer Electronics. Piscataway: IEEE, 2018: 1-4. 10.1109/icce.2018.8326152 |
106 | WANG S, YANG S, LI H, et al. SalientVR: Saliency-driven mobile 360-degree video streaming with gaze information[C]// Proceedings of the 28th Annual International Conference on Mobile Computing and Networking. New York: ACM, 2022: 542-555. 10.1145/3495243.3517018 |
107 | WANG S, YANG S, SU H, et al. Robust saliency-driven quality adaptation for mobile 360-degree video streaming[J]. IEEE Transactions on Mobile Computing, 2024, 23(2): 1312-1329. |
108 | LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. [2023-02-01]. . |
109 | GADALETA M, CHIARIOTTI F, ROSSI M, et al. D-DASH: a deep Q-learning framework for DASH video streaming[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 703-718. 10.1109/tccn.2017.2755007 |
110 | ZHANG Y, ZHAO P, BIAN K, et al. DRL360: 360-degree video streaming with deep reinforcement learning[C]// Proceedings of the IEEE INFOCOM 2019 — IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 1252-1260. 10.1109/infocom.2019.8737361 |
111 | FU J, CHEN X, ZHANG Z, et al. 360SRL: a sequential reinforcement learning approach for ABR tile-based 360 video streaming[C]// Proceedings of the 2019 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2019: 290-295. 10.1109/icme.2019.00058 |
112 | KAN N, ZOU J, LI C, et al. RAPT360: reinforcement learning-based rate adaptation for 360-degree video streaming with adaptive prediction and tiling[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(3): 1607-1623. 10.1109/tcsvt.2021.3076585 |
113 | WU C, WANG Z, SUN L. PAAS: a preference-aware deep reinforcement learning approach for 360° video streaming[C]// Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video. New York: ACM, 2021: 34-41. 10.1145/3458306.3460995 |
[1] | Aiguo JI, Yunzhe LUAN. Buffer compensation based video bitrate adaptation algorithm [J]. Journal of Computer Applications, 2022, 42(9): 2816-2822. |
[2] | HUANG Sheng, FU Yuanpeng, ZHANG Qianyun. Rate smooth switching algorithm based on DASH standard [J]. Journal of Computer Applications, 2019, 39(4): 1122-1126. |
[3] | HUANG Sheng, HU Lingwei, FU Yuanpeng. State machine based video rate adaptation algorithm [J]. Journal of Computer Applications, 2018, 38(7): 2001-2004. |
[4] | LIN Chang, LI Guoping, ZHAO Haiwu, WANG Guozhong, GU Xiao. Double ring mapping projection for panoramic video [J]. Journal of Computer Applications, 2017, 37(9): 2631-2635. |
[5] | YUAN Bin, LI Wenwei. Design and implementation of QoE measuring tool for personal cloud storage services [J]. Journal of Computer Applications, 2016, 36(9): 2409-2415. |
[6] | Jing-hua LIN Wei-min LEI Ling-nan LI Song BAI. Optimizing trick-play responsiveness in IPTV application [J]. Journal of Computer Applications, 2009, 29(11): 2897-2900. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||