| 1 | MONTANARO A. Quantum algorithms: an overview [J]. npj Quantum Information, 2016, 2: 15023.  10.1038/npjqi.2015.23 | 
																													
																							| 2 | SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring [C]// Proceedings 35th Annual Symposium on Foundations of Computer Science. Piscataway: IEEE, 1994: 124-134.  10.1007/3-540-58691-1_68 | 
																													
																							| 3 | 王潮,姚皓南,王宝楠,等. 量子计算密码攻击进展[J]. 计算机学报, 2020, 43(9): 1691-1707.  10.11897/SP.J.1016.2020.01691 | 
																													
																							|  | WANG C, YAO H N, WANG B N, et al. Progress in quantum computing cryptographic attacks [J]. Chinese Journal of Computers, 2020, 43(9): 1691-1707.  10.11897/SP.J.1016.2020.01691 | 
																													
																							| 4 | 钱建发,张莉娜. 利用立方图的线图构造量子纠错码[J]. 计算机工程与应用, 2013, 49(6): 16-18.  10.3778/j.issn.1002-8331.1210-0304 | 
																													
																							|  | QIAN J F, ZHANG L N. Construction of quantum codes from line graph of cube [J]. Computer Engineering and Applications, 2013, 49(6): 16-18.  10.3778/j.issn.1002-8331.1210-0304 | 
																													
																							| 5 | NARAYANAN A. Quantum computing for beginners [C]// Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway: IEEE, 1999, 3: 2231-2238.  10.1109/cec.1999.781900 | 
																													
																							| 6 | SELF C N, KHOSLA K E, SMITH A W R, et al. Variational quantum algorithm with information sharing [J]. npj Quantum Information, 2021, 7: 116.  10.1038/s41534-021-00452-9 | 
																													
																							| 7 | FARHI E, GOLDSTONE J, GUTMANN S. A quantum approximate optimization algorithm [EB/OL]. [2023-01-25]. .  10.22331/q-2022-07-07-759 | 
																													
																							| 8 | HERRMAN R, TREFFERT L, OSTROWSKI J, et al. Impact of graph structures for QAOA on MaxCut [J]. Quantum Information Processing, 2021, 20: 289.  10.1007/s11128-021-03232-8 | 
																													
																							| 9 | 王富民,倪明,周明,等. 量子绝热近似求解最大割问题的最优解[J]. 计算机工程, 2020, 46(1): 25-30. | 
																													
																							|  | WANG F M, NI M, ZHOU M, et al. Optimal solution of max-cut problem using quantum adiabatic approximation [J]. Computer Engineering, 2020, 46(1): 25-30. | 
																													
																							| 10 | 何键浩,李绿周. 量子优化算法综述[J]. 计算机研究与发展, 2021, 58(9): 1823-1834.  10.7544/issn1000-1239.2021.20210276 | 
																													
																							|  | HE J H, LI L Z. An overview of quantum optimization [J]. Journal of Computer Research and Development, 2021, 58(9): 1823-1834.  10.7544/issn1000-1239.2021.20210276 | 
																													
																							| 11 | BRAVYI S, KLIESCH A, KOENIG R, et al. Hybrid quantum-classical algorithms for approximate graph coloring [J]. Quantum, 2022, 6: 678.  10.22331/q-2022-03-30-678 | 
																													
																							| 12 | RUAN Y, MARSH S, XUE X, et al. The quantum approximate algorithm for solving traveling salesman problem [J]. Computers, Materials & Continua, 2020, 63(3): 1237-1247.  10.32604/cmc.2020.010001 | 
																													
																							| 13 | CHOI J, KIM J. A tutorial on quantum approximate optimization algorithm (QAOA): fundamentals and applications [C]// Proceedings of the 2019 International Conference on Information and Communication Technology Convergence. Piscataway: IEEE, 2019: 138-142.  10.1109/ictc46691.2019.8939749 | 
																													
																							| 14 | ZHANG Y J, MU X D, LIU X W, et al. Applying the quantum approximate optimization algorithm to the minimum vertex cover problem [J]. Applied Soft Computing, 2022, 118:108554.  10.1016/j.asoc.2022.108554 | 
																													
																							| 15 | VIKSTÅL P, GRÖNKVIST M, SVENSSON M, et al. Applying the quantum approximate optimization algorithm to the tail-assignment problem [J]. Physical Review Applied, 2020, 14: 034009.  10.1103/physrevapplied.14.034009 | 
																													
																							| 16 | GONG C, WANG T, HE W, et al. A quantum approximate optimization algorithm for solving Hamilton path problem [J]. The Journal of Supercomputing, 2022, 78: 15381-15403.  10.1007/s11227-022-04462-y | 
																													
																							| 17 | KORTEN T, DIEZ S, LINKE H, et al. Design of network-based biocomputation circuits for the exact cover problem [J]. New Journal of Physics, 2021, 23: 085004.  10.1088/1367-2630/ac175d | 
																													
																							| 18 | GRÖNKVIST M. The tail assignment problem [R]. Göteborg, Sweden: Chalmers University of Technology and Göteborg University, Department of Computer Science and Engineering, 2005: 4-6. | 
																													
																							| 19 | BA C. An exact cover-based approach for service composition[C]// Proceedings of the 2016 IEEE International Conference on Web Services. Piscataway: IEEE, 2016: 631-636.  10.1109/icws.2016.87 | 
																													
																							| 20 | BENGTSSON A, VIKSTÅL P, WARREN C, et al. Improved success probability with greater circuit depth for the quantum approximate optimization algorithm [J]. Physical Review Applied, 2020, 14: 034010.  10.1103/physrevapplied.14.034010 | 
																													
																							| 21 | LUCAS A. Ising formulations of many NP problems [J]. Frontiers in Physics, 2014, 2: 5.  10.3389/fphy.2014.00005 | 
																													
																							| 22 | FU Y, ANDERSON P W. Application of statistical mechanics to NP-complete problems in combinatorial optimisation [J]. Journal of Physics A: Mathematical and General, 1986, 19(9): 1605.  10.1088/0305-4470/19/9/033 | 
																													
																							| 23 | MÉZARD M, MONTANARI A. Information, Physics, and Computation [M]. Oxford: Oxford University Press, 2009: 35-36.  10.1093/acprof:oso/9780198570837.001.0001 | 
																													
																							| 24 | ZHOU L, WANG S-T, CHOI S, et al. Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices [J]. Physical Review X, 2020, 10: 021067.  10.1103/physrevx.10.021067 | 
																													
																							| 25 | MAGNIEZ F, NAYAK A, ROLAND J, et al. Search via quantum walk [C]// Proceedings of the 39th Annual ACM Symposium on Theory of Computing. New York: ACM, 2007: 575-584.  10.1145/1250790.1250874 | 
																													
																							| 26 | CHILDS A, GOLDSTONE J. Spatial search by quantum walk [J]. Physical Review A, 2004, 70: 022314.  10.1103/physreva.70.022314 | 
																													
																							| 27 | PAPAGEORGIOU A, PETRAS I. Estimating the ground state energy of the Schrödinger equation for convex potentials [J]. Journal of Complexity, 2014, 30(4): 469-494.  10.1016/j.jco.2014.03.002 | 
																													
																							| 28 | WILLE R, VAN METER R, NAVEH Y. IBM’s Qiskit tool chain: working with and developing for real quantum computers[C]// Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition. Piscataway: IEEE, 2019: 1234-1240.  10.23919/date.2019.8715261 | 
																													
																							| 29 | MICELI R, McGUIGAN M. Quantum computation and visualization of Hamiltonians using discrete quantum mechanics and IBM Qiskit [C]// Proceedings of the 2018 New York Scientific Data Summit. Piscataway: IEEE, 2018: 1-6.  10.1109/nysds.2018.8538959 | 
																													
																							| 30 | FRAZIER P I. A tutorial on Bayesian optimization [EB/OL]. [2022-11-14]. . | 
																													
																							| 31 | PAN Y, TONG Y, YANG Y. Automatic depth optimization for a quantum approximate optimization algorithm [J]. Physical Review A, 2022, 105(3): 032433.  10.1103/physreva.105.032433 | 
																													
																							| 32 | POWELL M J D. A direct search optimization method that models the objective and constraint functions by linear interpolation [M]// Advances in Optimization and Numerical Anslysis. Dordrecht: Springer, 1994: 51-67.  10.1007/978-94-015-8330-5_4 | 
																													
																							| 33 | KNUTH D E. Dancing links [EB/OL]. [2023-01-22]. . |