Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (10): 3081-3089.DOI: 10.11772/j.issn.1001-9081.2023101486
• Artificial intelligence • Previous Articles Next Articles
Jinke DENG1,2, Wenjie DUAN1,2, Shunxiang ZHANG1,2(), Yuqing WANG1,2, Shuyu LI1,2, Jiawei LI1,2
Received:
2023-11-02
Revised:
2024-01-10
Accepted:
2024-01-19
Online:
2024-10-15
Published:
2024-10-10
Contact:
Shunxiang ZHANG
About author:
DENG Jinke, born in 2001, M. S. candidate. His research interests include data mining, information extraction.Supported by:
邓金科1,2, 段文杰1,2, 张顺香1,2(), 汪雨晴1,2, 李书羽1,2, 李嘉伟1,2
通讯作者:
张顺香
作者简介:
邓金科(2001—),男,安徽亳州人,硕士研究生,CCF会员,主要研究方向:数据挖掘、信息抽取基金资助:
CLC Number:
Jinke DENG, Wenjie DUAN, Shunxiang ZHANG, Yuqing WANG, Shuyu LI, Jiawei LI. Complex causal relationship extraction based on prompt enhancement and bi-graph attention network[J]. Journal of Computer Applications, 2024, 44(10): 3081-3089.
邓金科, 段文杰, 张顺香, 汪雨晴, 李书羽, 李嘉伟. 基于提示增强与双图注意力网络的复杂因果关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3081-3089.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101486
模型 | 总体 | 单一因果关系 | 链式因果关系 | 多因果关系 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | |
LSTM | 32.45 | 31.96 | 32.04 | 39.16 | 39.58 | 39.37 | 22.92 | 23.54 | 23.23 | 17.86 | 20.32 | 19.01 |
LSTM+CRF | 38.72 | 38.12 | 38.18 | 44.15 | 44.62 | 44.39 | 31.25 | 33.28 | 32.23 | 25.00 | 25.46 | 25.23 |
BiLSTM | 70.69 | 70.23 | 70.31 | 79.58 | 79.65 | 79.62 | 56.25 | 56.71 | 56.48 | 55.36 | 54.98 | 55.17 |
BiLSTM+CRF | 72.74 | 72.36 | 72.27 | 79.16 | 79.82 | 79.49 | 62.50 | 62.89 | 62.69 | 58.93 | 58.46 | 58.69 |
BiLSTM-LAN | 78.13 | 78.55 | 78.30 | 81.66 | 81.53 | 81.60 | 72.92 | 72.33 | 72.62 | 71.43 | 71.68 | 71.55 |
PA-LSTM | 82.40 | 82.50 | 82.61 | 87.50 | 87.46 | 87.48 | 75.00 | 75.32 | 75.16 | 73.21 | 73.65 | 73.43 |
C-GCN | 84.44 | 84.58 | 84.73 | 87.50 | 87.12 | 87.31 | 80.21 | 80.84 | 80.52 | 78.57 | 78.15 | 78.36 |
RPA-GCN | 85.46 | 85.56 | 85.67 | 87.50 | 87.31 | 87.41 | 83.33 | 83.52 | 83.42 | 83.36 | 81.36 | 80.86 |
PE-BiGAT | 87.76 | 86.88 | 87.32 | 89.17 | 89.23 | 89.20 | 85.42 | 85.74 | 85.58 | 85.71 | 85.56 | 85.63 |
Tab. 1 Precision, recall, F1 scores for fine-grained extraction relationships
模型 | 总体 | 单一因果关系 | 链式因果关系 | 多因果关系 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | |
LSTM | 32.45 | 31.96 | 32.04 | 39.16 | 39.58 | 39.37 | 22.92 | 23.54 | 23.23 | 17.86 | 20.32 | 19.01 |
LSTM+CRF | 38.72 | 38.12 | 38.18 | 44.15 | 44.62 | 44.39 | 31.25 | 33.28 | 32.23 | 25.00 | 25.46 | 25.23 |
BiLSTM | 70.69 | 70.23 | 70.31 | 79.58 | 79.65 | 79.62 | 56.25 | 56.71 | 56.48 | 55.36 | 54.98 | 55.17 |
BiLSTM+CRF | 72.74 | 72.36 | 72.27 | 79.16 | 79.82 | 79.49 | 62.50 | 62.89 | 62.69 | 58.93 | 58.46 | 58.69 |
BiLSTM-LAN | 78.13 | 78.55 | 78.30 | 81.66 | 81.53 | 81.60 | 72.92 | 72.33 | 72.62 | 71.43 | 71.68 | 71.55 |
PA-LSTM | 82.40 | 82.50 | 82.61 | 87.50 | 87.46 | 87.48 | 75.00 | 75.32 | 75.16 | 73.21 | 73.65 | 73.43 |
C-GCN | 84.44 | 84.58 | 84.73 | 87.50 | 87.12 | 87.31 | 80.21 | 80.84 | 80.52 | 78.57 | 78.15 | 78.36 |
RPA-GCN | 85.46 | 85.56 | 85.67 | 87.50 | 87.31 | 87.41 | 83.33 | 83.52 | 83.42 | 83.36 | 81.36 | 80.86 |
PE-BiGAT | 87.76 | 86.88 | 87.32 | 89.17 | 89.23 | 89.20 | 85.42 | 85.74 | 85.58 | 85.71 | 85.56 | 85.63 |
模型 | C标签 | E标签 | O标签 | ||||||
---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | |
LSTM | 55.32 | 63.57 | 59.16 | 60.46 | 60.19 | 60.32 | 95.32 | 94.23 | 94.77 |
LSTM+CRF | 61.45 | 71.38 | 66.04 | 63.54 | 69.15 | 66.23 | 96.87 | 96.52 | 96.69 |
BiLSTM | 83.21 | 84.61 | 83.90 | 86.42 | 88.64 | 87.52 | 98.28 | 99.63 | 98.95 |
BiLSTM+CRF | 83.64 | 83.55 | 83.59 | 88.31 | 88.43 | 88.37 | 98.41 | 98.70 | 98.55 |
BiLSTM-LAN | 84.36 | 84.12 | 84.24 | 88.45 | 88.79 | 88.62 | 98.36 | 98.11 | 98.23 |
PA-LSTM | 84.65 | 85.21 | 84.93 | 89.16 | 88.05 | 88.60 | 97.54 | 97.44 | 97.49 |
C-GCN | 88.72 | 88.13 | 88.42 | 90.32 | 90.47 | 90.39 | 98.13 | 98.32 | 98.22 |
RPA-GCN | 89.33 | 89.18 | 89.25 | 91.56 | 91.02 | 91.29 | 98.34 | 97.95 | 98.14 |
PE-BiGAT | 91.52 | 90.54 | 91.03 | 92.31 | 91.64 | 91.97 | 98.82 | 98.71 | 98.76 |
Tab. 2 Coarse grained extraction of entity precision, recall, F1 scores
模型 | C标签 | E标签 | O标签 | ||||||
---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | |
LSTM | 55.32 | 63.57 | 59.16 | 60.46 | 60.19 | 60.32 | 95.32 | 94.23 | 94.77 |
LSTM+CRF | 61.45 | 71.38 | 66.04 | 63.54 | 69.15 | 66.23 | 96.87 | 96.52 | 96.69 |
BiLSTM | 83.21 | 84.61 | 83.90 | 86.42 | 88.64 | 87.52 | 98.28 | 99.63 | 98.95 |
BiLSTM+CRF | 83.64 | 83.55 | 83.59 | 88.31 | 88.43 | 88.37 | 98.41 | 98.70 | 98.55 |
BiLSTM-LAN | 84.36 | 84.12 | 84.24 | 88.45 | 88.79 | 88.62 | 98.36 | 98.11 | 98.23 |
PA-LSTM | 84.65 | 85.21 | 84.93 | 89.16 | 88.05 | 88.60 | 97.54 | 97.44 | 97.49 |
C-GCN | 88.72 | 88.13 | 88.42 | 90.32 | 90.47 | 90.39 | 98.13 | 98.32 | 98.22 |
RPA-GCN | 89.33 | 89.18 | 89.25 | 91.56 | 91.02 | 91.29 | 98.34 | 97.95 | 98.14 |
PE-BiGAT | 91.52 | 90.54 | 91.03 | 92.31 | 91.64 | 91.97 | 98.82 | 98.71 | 98.76 |
数据集 | 单一因果关系数 | 链式因果关系数 | 多因果关系数 |
---|---|---|---|
共计 | 3 054 | 652 | 214 |
Train set | 2 576 | 458 | 102 |
Validation set | 238 | 98 | 56 |
Test set | 240 | 96 | 56 |
Tab. 3 Dataset relationship type distribution
数据集 | 单一因果关系数 | 链式因果关系数 | 多因果关系数 |
---|---|---|---|
共计 | 3 054 | 652 | 214 |
Train set | 2 576 | 458 | 102 |
Validation set | 238 | 98 | 56 |
Test set | 240 | 96 | 56 |
模型 | P | R | F1值 |
---|---|---|---|
w/o syn | 85.69 | 85.14 | 85.41 |
w/o sem | 85.28 | 85.79 | 85.53 |
w/o kno | 83.73 | 83.15 | 83.44 |
w/o mpt | 81.25 | 81.94 | 81.59 |
PE-BiGAT | 87.76 | 86.88 | 87.32 |
Tab. 4 Comparison test results of ablation experiments
模型 | P | R | F1值 |
---|---|---|---|
w/o syn | 85.69 | 85.14 | 85.41 |
w/o sem | 85.28 | 85.79 | 85.53 |
w/o kno | 83.73 | 83.15 | 83.44 |
w/o mpt | 81.25 | 81.94 | 81.59 |
PE-BiGAT | 87.76 | 86.88 | 87.32 |
1 | XU J, CHEN Y, QIN Y, et al. A feature combination-based graph convolutional neural network model for relation extraction[J]. Symmetry, 2021, 13(8): No.1458. |
2 | 冯冲,康丽琪,石戈,等. 融合对抗学习的因果关系抽取[J]. 自动化学报, 2018, 44(5): 811-818. |
FENG C, KANG L Q, SHI G, et al. Causality extraction with GAN[J]. Acta Automatica Sinica, 2018, 44(5): 811-818. | |
3 | 田生伟,周兴发,禹龙,等. 基于双向LSTM的维吾尔语事件因果关系抽取[J]. 电子与信息学报, 2018, 40(1): 200-208. |
TIAN S W, ZHOU X F, YU L, et al. Causal relation extraction of Uyghur events based on bidirectional long short-term memory model[J]. Journal of Electronics & Information Technology, 2018, 40(1): 200-208. | |
4 | XU Y, MOU L, LI G, et al. Classifying relations via long short term memory networks along shortest dependency paths[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1785-1794. |
5 | TAI K S, SOCHER R, MANNING C D. Improved semantic representations from tree-structured long short-term memory networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2015: 1556-1566. |
6 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2024-01-08]. . |
7 | SHAN Y, CHE C, WEI X, et al. Bi-graph attention network for aspect category sentiment classification[J]. Knowledge-Based Systems, 2022, 258: No.109972. |
8 | HENDRICKX I, KIM S N, KOZAREVA Z, et al. SemEval-2010 Task 8: multi-way classification of semantic relations between pairs of nominals[C]// Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2010: 33-38. |
9 | HIDEY C, McKEOWN K. Identifying causal relations using parallel Wikipedia articles[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 1424-1433. |
10 | ZHAO S, WANG Q, MASSUNG S, et al. Constructing and embedding abstract event causality networks from text snippets[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. New York: ACM, 2017: 335-344. |
11 | GARCIA D, EDF-DER, IMA-TIEM. COATIS, an NLP system to locate expressions of actions connected by causality links[C]// Proceedings of the 1997 International Conference on Knowledge Engineering and Knowledge Management, LNCS 1319. Berlin: Springer, 1997: 347-352. |
12 | KRUENGKRAI C, TORISAWA K, HASHIMOTO C, et al. Improving event causality recognition with multiple background knowledge sources using multi-column convolutional neural networks[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 3466-3473. |
13 | LIN Z, KAN M Y, NG H T. Recognizing implicit discourse relations in the penn discourse treebank[C]// Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2009: 343-351. |
14 | LI Z, LI Q, ZOU X, et al. Causality extraction based on self-attentive BiLSTM-CRF with transferred embeddings[J]. Neurocomputing, 2021, 423: 207-219. |
15 | 陈克正,郭晓然,钟勇,等. 基于负训练和迁移学习的关系抽取方法[J]. 计算机应用, 2023, 43(8): 2426-2430. |
CHEN K Z, GUO X R, ZHONG Y, et al. Relation extraction method based on negative training and transfer learning[J]. Journal of Computer Applications, 2023, 43(8): 2426-2430. | |
16 | GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5/6): 602-610. |
17 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
18 | CHEN Y, WAN W, HU J, et al. Complex causal extraction of fusion of entity location sensing and graph attention networks[J]. Information, 2022, 13(8): No.364. |
19 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2024-01-08]. . |
20 | LI X, YIN F, SUN Z, et al. Entity-relation extraction as multi-turn question answering[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 1340-1350. |
21 | ZHOU G, MA W, GONG Y, et al. Nested causality extraction on traffic accident texts as question answering[C]// Proceedings of the 2021 CCF International Conference on Natural Language Processing and Chinese Computing, LNCS 13029. Cham: Springer, 2021: 354-362. |
22 | CAO Q, HAO X, REN H, et al. Graph attention network based detection of causality for textual emotion-cause pair[J]. World Wide Web, 2022, 26(4): 1731-1745. |
23 | FEI H, REN Y, JI D. Boundaries and edges rethinking: an end-to-end neural model for overlapping entity relation extraction[J]. Information Processing and Management, 2020, 57(6): No.102311. |
24 | 张勇,高大林,巩敦卫,等. 用于关系抽取的注意力图长短时记忆神经网络[J]. 智能系统学报, 2021, 16(3):518-527. |
ZHANG Y, GAO D L, GONG D W, et al. Attention graph long short-term memory neural network for relation extraction[J]. CAAI Transactions on Intelligent Systems, 2021, 16(3): 518-527. | |
25 | 李志欣,孙亚茹,唐素勤,等. 双路注意力引导图卷积网络的关系抽取[J]. 电子学报, 2021, 49(2): 315-323. |
LI Z X, SUN Y R, TANG S Q, et al. Dual attention guided graph convolutional networks for relation extraction[J]. Acta Electronica Sinica, 2021, 49(2): 315-323. | |
26 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
27 | WEI Z, SU J, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 1476-1488. |
28 | SPEER R, HAVASI C. Representing general relational knowledge in ConceptNet 5[C]// Proceedings of the 8th International Conference on Language Resources and Evaluation. [S.l.]: European Language Resources Association, 2012: 3679-3686. |
29 | QI P, ZHANG Y, ZHANG Y, et al. Stanza: a Python natural language processing Toolkit for many human languages[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Stroudsburg: ACL, 2020: 101-108. |
30 | DOZAT T, MANNING C D. Deep biaffine attention for neural dependency parsing[EB/OL]. (2017-03-10) [2024-01-08]. . |
31 | HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. (2015-08-09) [2024-01-08]. . |
32 | CUI L, ZHANG Y. Hierarchically-refined label attention network for sequence labeling[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4115-4128. |
33 | ZHANG Y, ZHONG V, CHEN D, et al. Position-aware attention and supervised data improve slot filling[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 35-45. |
34 | ZHANG Y, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2205-2215. |
[1] | XUE Lu, SONG Wei. Relation extraction method based on dynamic label [J]. Journal of Computer Applications, 2020, 40(6): 1601-1606. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||