Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1694-1702.DOI: 10.11772/j.issn.1001-9081.2024050632
• Multimedia computing and computer simulation • Previous Articles
					
						                                                                                                                                                                                                                                                    Wenshuai WANG, Jun HAN( ), Guangyi HU, Keyu CHEN
), Guangyi HU, Keyu CHEN
												  
						
						
						
					
				
Received:2024-05-17
															
							
																	Revised:2024-08-20
															
							
																	Accepted:2024-08-22
															
							
							
																	Online:2024-08-29
															
							
																	Published:2025-05-10
															
							
						Contact:
								Jun HAN   
													About author:WANG Wenshuai, born in 1996, M. S. candidate. His research interests include UAV inspection, depth estimation.Supported by:通讯作者:
					韩军
							作者简介:王文帅(1996—),男,河南商丘人,硕士研究生,CCF会员,主要研究方向:无人机巡检、深度估计基金资助:CLC Number:
Wenshuai WANG, Jun HAN, Guangyi HU, Keyu CHEN. Refined inspection method for power transmission lines based on monocular vision[J]. Journal of Computer Applications, 2025, 45(5): 1694-1702.
王文帅, 韩军, 胡广怡, 陈炣燏. 基于单目视觉输电线路精细化巡检方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1694-1702.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050632
| 名称 | 标签 | 值 | 
|---|---|---|
| 航点 | <coordinates> | 经度、纬度、高度 | 
| <data name="yaw"> | 无人机偏航角 | |
| <data name="pitch"> | 无人机俯仰角 | |
| <data name="roll"> | 无人机横滚角 | |
| <actions label="takePhoto"> | 是否拍照(True or False) | |
| <data name="cameraYaw"> | 云台相机偏航角 | |
| <data name="cameraPitch"> | 云台相机俯仰角 | |
| <data name="cameraRoll"> | 云台相机横滚角 | |
| 航线 | <coordinates> | 所有航点的经度、纬度、高度 | 
| <flightSpeed> | 航线无人机飞行速度 | |
| <actionOnFinish> | 航线任务完成后无人机操作 | 
Tab. 1 Information of KML file related settings
| 名称 | 标签 | 值 | 
|---|---|---|
| 航点 | <coordinates> | 经度、纬度、高度 | 
| <data name="yaw"> | 无人机偏航角 | |
| <data name="pitch"> | 无人机俯仰角 | |
| <data name="roll"> | 无人机横滚角 | |
| <actions label="takePhoto"> | 是否拍照(True or False) | |
| <data name="cameraYaw"> | 云台相机偏航角 | |
| <data name="cameraPitch"> | 云台相机俯仰角 | |
| <data name="cameraRoll"> | 云台相机横滚角 | |
| 航线 | <coordinates> | 所有航点的经度、纬度、高度 | 
| <flightSpeed> | 航线无人机飞行速度 | |
| <actionOnFinish> | 航线任务完成后无人机操作 | 
| 样本序号 | 实际距离/m | 感知距离/m | 绝对误差/m | 相对误差/% | 
|---|---|---|---|---|
| 1 | 3 | 3.15 | 0.15 | 5.0 | 
| 2 | 5 | 5.18 | 0.18 | 3.6 | 
| 3 | 8 | 7.80 | 0.20 | 2.5 | 
| 4 | 10 | 10.21 | 0.21 | 2.1 | 
| 5 | 13 | 12.81 | 0.19 | 1.5 | 
| 6 | 15 | 15.32 | 0.32 | 2.1 | 
Tab. 2 Insulator depth output by depth perception algorithm and true depth
| 样本序号 | 实际距离/m | 感知距离/m | 绝对误差/m | 相对误差/% | 
|---|---|---|---|---|
| 1 | 3 | 3.15 | 0.15 | 5.0 | 
| 2 | 5 | 5.18 | 0.18 | 3.6 | 
| 3 | 8 | 7.80 | 0.20 | 2.5 | 
| 4 | 10 | 10.21 | 0.21 | 2.1 | 
| 5 | 13 | 12.81 | 0.19 | 1.5 | 
| 6 | 15 | 15.32 | 0.32 | 2.1 | 
| 算法 | 图像分辨率 | 设备 | 推理时间/ms | FPS | 
|---|---|---|---|---|
| Monodepth2 | 512×512 | 3080ti | 11.1 | 90.1 | 
| 512×512 | TX2 | 74.1 | 13.5 | |
| Fast-Monodepth2 | 512×512 | 3080ti | 5.8 | 172.4 | 
| 512×512 | TX2 | 41.2 | 24.3 | 
Tab. 3 Inference speed comparison of depth perception algorithm on servers and edge computing devices
| 算法 | 图像分辨率 | 设备 | 推理时间/ms | FPS | 
|---|---|---|---|---|
| Monodepth2 | 512×512 | 3080ti | 11.1 | 90.1 | 
| 512×512 | TX2 | 74.1 | 13.5 | |
| Fast-Monodepth2 | 512×512 | 3080ti | 5.8 | 172.4 | 
| 512×512 | TX2 | 41.2 | 24.3 | 
| 算法 | 参数量/106 | AbsRel | RMSE | |
|---|---|---|---|---|
| 基线(Monodepth2) | 14.40 | 0.125 | 6.109 | 0.861 | 
| +倒置残差块 | 6.00 | 0.125 | 6.189 | 0.856 | 
| +解码端上采样块 | 3.01 | 0.127 | 6.192 | 0.853 | 
| +跳跃连接 | 3.07 | 0.124 | 6.156 | 0.857 | 
Tab. 4 Ablation experimental results of Fast-Monodepth2
| 算法 | 参数量/106 | AbsRel | RMSE | |
|---|---|---|---|---|
| 基线(Monodepth2) | 14.40 | 0.125 | 6.109 | 0.861 | 
| +倒置残差块 | 6.00 | 0.125 | 6.189 | 0.856 | 
| +解码端上采样块 | 3.01 | 0.127 | 6.192 | 0.853 | 
| +跳跃连接 | 3.07 | 0.124 | 6.156 | 0.857 | 
| 算法 | 参数量/106 | AbsRel | RMSE | |
|---|---|---|---|---|
| MonoViT[ | 81.20 | 0.123 | 6.059 | 0.866 | 
| MonoFormer[ | 138.00 | 0.114 | 5.896 | 0.872 | 
| Fast-Monodepth2 | 3.07 | 0.124 | 6.156 | 0.857 | 
Tab. 5 Performance comparison of different monocular depth perception algorithms
| 算法 | 参数量/106 | AbsRel | RMSE | |
|---|---|---|---|---|
| MonoViT[ | 81.20 | 0.123 | 6.059 | 0.866 | 
| MonoFormer[ | 138.00 | 0.114 | 5.896 | 0.872 | 
| Fast-Monodepth2 | 3.07 | 0.124 | 6.156 | 0.857 | 
| 算法 | MIoU | MPA | MRecall | 
|---|---|---|---|
| Fast-SCNN[ | 76.02 | 91.06 | 91.06 | 
| Lightweight-DeepLabV3+[ | 77.81 | 91.24 | 91.24 | 
| DeepLabv3+ | 80.38 | 91.59 | 91.59 | 
| Fast-DeepLabv3+ | 78.38 | 91.32 | 91.32 | 
Tab. 6 Performance comparison of segmentation and localization of different algorithms
| 算法 | MIoU | MPA | MRecall | 
|---|---|---|---|
| Fast-SCNN[ | 76.02 | 91.06 | 91.06 | 
| Lightweight-DeepLabV3+[ | 77.81 | 91.24 | 91.24 | 
| DeepLabv3+ | 80.38 | 91.59 | 91.59 | 
| Fast-DeepLabv3+ | 78.38 | 91.32 | 91.32 | 
| 网络 | 图像分辨率 | 设备 | 推理时间/ms | FPS | 
|---|---|---|---|---|
| DeepLabv3+ | 512×512 | 3080ti | 35.9 | 27.8 | 
| 512×512 | TX2 | 322.6 | 3.1 | |
| Fast-DeepLabv3+ | 512×512 | 3080ti | 19.0 | 52.6 | 
| 512×512 | TX2 | 121.9 | 8.2 | 
Tab. 7 Comparison of inference speeds of different networks
| 网络 | 图像分辨率 | 设备 | 推理时间/ms | FPS | 
|---|---|---|---|---|
| DeepLabv3+ | 512×512 | 3080ti | 35.9 | 27.8 | 
| 512×512 | TX2 | 322.6 | 3.1 | |
| Fast-DeepLabv3+ | 512×512 | 3080ti | 19.0 | 52.6 | 
| 512×512 | TX2 | 121.9 | 8.2 | 
| 网络 | MIoU | MPA | MRecall | 
|---|---|---|---|
| 基线(DeepLabv3+) | 80.38 | 91.59 | 91.59 | 
| +MobileNetv3 | 77.06 | 91.18 | 91.18 | 
| +NAM | 78.21 | 91.30 | 91.30 | 
| +CE_Loss-Dice_Loss | 78.38 | 91.32 | 91.32 | 
Tab. 8 Ablation experimental results of Fast-DeepLabv3+
| 网络 | MIoU | MPA | MRecall | 
|---|---|---|---|
| 基线(DeepLabv3+) | 80.38 | 91.59 | 91.59 | 
| +MobileNetv3 | 77.06 | 91.18 | 91.18 | 
| +NAM | 78.21 | 91.30 | 91.30 | 
| +CE_Loss-Dice_Loss | 78.38 | 91.32 | 91.32 | 
| 姿态 | 调整前 | 调整后(最优巡检点) | 余弦相似度 | 
|---|---|---|---|
| 1 | 经度:-122.140 777°,纬度:47.640 658°,高度:45 m | 经度:-122.142 318°,纬度:47.640 704°,高度:45 m 无人机姿态: | 0.989 | 
| 2 | 经度:-122.140 745°,纬度:47.641 468°,高度:45 m 无人机姿态: 云台相机姿态: | 经度:-122.141 922°,纬度:47.641 461°,高度:45 m 无人机姿态: 云台相机姿态: | 0.999 | 
| 3 | 经度:-122.139 102°,纬度:47.641 619°,高度:45 m 无人机姿态: 云台相机姿态: | 经度:-122.139 549°,纬度:47.641 470°,高度:45 m 无人机姿态: 云台相机姿态: | 0.979 | 
Tab. 9 Information of UAV position and gimbal camera posture before and after adjustment
| 姿态 | 调整前 | 调整后(最优巡检点) | 余弦相似度 | 
|---|---|---|---|
| 1 | 经度:-122.140 777°,纬度:47.640 658°,高度:45 m | 经度:-122.142 318°,纬度:47.640 704°,高度:45 m 无人机姿态: | 0.989 | 
| 2 | 经度:-122.140 745°,纬度:47.641 468°,高度:45 m 无人机姿态: 云台相机姿态: | 经度:-122.141 922°,纬度:47.641 461°,高度:45 m 无人机姿态: 云台相机姿态: | 0.999 | 
| 3 | 经度:-122.139 102°,纬度:47.641 619°,高度:45 m 无人机姿态: 云台相机姿态: | 经度:-122.139 549°,纬度:47.641 470°,高度:45 m 无人机姿态: 云台相机姿态: | 0.979 | 
| 1 | 甘鹏,方博,李博,等. 基于改进RRT的输电线路无人机自动巡检方法[J]. 电子设计工程, 2022, 30(21):39-42, 47. | 
| GAN P, FANG B, LI B, et al. Automatic inspection method of transmission line by UAV based on improved RRT[J]. Electronic Design Engineering, 2022, 30(21): 39-42, 47. | |
| 2 | 徐其春,郭晨晨,刘志明,等. 无人机线路自主巡检的动态轨迹规划方法[J]. 电力系统及其自动化学报, 2022, 34(10):24-31. | 
| XU Q C, GUO C C, LIU Z M, et al. Drone autonomous inspection method for transmission line based on dynamic trajectory planning[J]. Journal of the CSU-EPSA, 2022, 34(10): 24-31. | |
| 3 | 邓荣军,王斌,熊典,等. 基于遗传算法的输电线路无人机巡检路径规划[J]. 计算机测量与控制, 2015, 23(4):1299-1301. | 
| DENG R J, WANG B, XIONG D, et al. A path planning for power transmission lines inspection with unmanned aerial vehicle based on genetic-pattern searching algorithm[J]. Computer Measurement and Control, 2015, 23(4): 1299-1301. | |
| 4 | CUI J, ZHANG Y, MA S, et al. Path planning algorithms for power transmission line inspection using unmanned aerial vehicles[C]// Proceedings of the 29th Chinese Control and Decision Conference. Piscataway: IEEE, 2017: 2304-2309. | 
| 5 | 俞玉瑾,韩军,赵庆喜,等. 基于IHDR的自主学习巡检技术研究[J]. 计算机工程, 2019, 45(4):311-315, 320. | 
| YU Y J, HAN J, ZHAO Q X, et al. Research on autonomous learning inspection technology based on IHDR[J]. Computer Engineering, 2019, 45(4): 311-315, 320. | |
| 6 | 戴永东,王永强,高超,等. 电力输电线路无人机巡检航线智能规划方法[J]. 重庆理工大学学报(自然科学), 2023, 37(9):253-260. | 
| DAI Y D, WANG Y Q, GAO C, et al. Intelligent path planning method for unmanned serial vehicle inspection of power transmission lines[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(9): 253-260. | |
| 7 | 金韬,王祎,杨洲. 基于高精度输电通道地图的无人机线路巡检航线规划方法研究[J]. 自动化与仪表, 2022, 37(4):1-5. | 
| JIN T, WANG Y, YANG Z. Research on UAV line inspection route planning method based on high-precision transmission channel map[J]. Automation and Instrumentation, 2022, 37(4): 1-5. | |
| 8 | 彭炽刚.基于激光雷达点云数据的输电线路巡检航线自动规划方法[J].电子设计工程,2021,29(3):22-26. | 
| PENG C G. Automatic planning method of transmission line inspection route based on lidar point cloud data[J]. Electronic Design Engineering, 2021, 29(3): 22-26. | |
| 9 | ALEXIOU D, TSIAKAS K, ZAMPOKAS G, et al. Cognitive fusion-based path planning for UAV inspection of power towers[C]// Proceedings of the 2023 IEEE International Conference on Imaging Systems and Techniques. Piscataway: IEEE, 2023: 1-6. | 
| 10 | 梁文勇,吴大伟,谷山强,等. 输电线路多旋翼无人机精细化自主巡检航迹优化方法[J]. 高电压技术, 2020, 46(9):3054-3061. | 
| LIANG W Y, WU D W, GU S Q, et al. Optimization method for fine autonomous inspection route of transmission lines by multi-rotor unmanned aerial vehicle[J]. High Voltage Engineering, 2020, 46(9): 3054-3061. | |
| 11 | HE T, ZENG Y, HU Z. Research of multi-rotor UAVs detailed autonomous inspection technology of transmission lines based on route planning[J]. IEEE Access, 2019, 7: 114955-114965. | 
| 12 | GODARD C, AODHA O MAC, FIRMAN M, et al. Digging into self-supervised monocular depth estimation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3827-3837. | 
| 13 | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 833-851. | 
| 14 | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324. | 
| 15 | LIU Y, SHAO Z, TENG Y, et al. NAM: normalization-based attention module[EB/OL]. [2024-03-26].. | 
| 16 | SHAH S, DEY D, LOVETT C, et al. AirSim: high-fidelity visual and physical simulation for autonomous vehicles[C]// Proceedings of 2017 International Conference on Field and Service Robotics, SPAR 5. Cham: Springer, 2018: 621-635. | 
| 17 | ZHAO C, ZHANG Y, POGGI M, et al. MonoViT: self-supervised monocular depth estimation with a Vision Transformer[C]// Proceedings of the 2022 International Conference on 3D Vision. Piscataway: IEEE, 2022: 668-678. | 
| 18 | BAE J, MOON S, IM S. Deep digging into the generalization of self-supervised monocular depth estimation[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 187-196. | 
| 19 | POUDEL R P K, LIWICKI S, CIPOLLA R. Fast-SCNN: fast semantic segmentation network[EB/OL]. [2024-03-26].. | 
| 20 | 武锦龙,吴虹麒,李浩,等. 基于改进DeepLabV3+的荞麦苗期无人机遥感图像分割识别方法研究[J]. 农业机械学报, 2024, 55(5):186-195. | 
| WU J L, WU H Q, LI H, et al. Segmentation of buckwheat by UAV based on improved lightweight DeepLabV3+ at seedling stage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(5): 186-195. | 
| [1] | FU Zhenqi, SHAO Feng. Subjective and objective quality assessment for stereoscopic 3D retargeted images [J]. Journal of Computer Applications, 2019, 39(5): 1434-1439. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||