Journal of Computer Applications ›› 2011, Vol. 31 ›› Issue (04): 1074-1078.DOI: 10.3724/SP.J.1087.2011.01074
• Artificial intelligence • Previous Articles Next Articles
Hong-bo SHI,Ya-qin LIU,Ai-jun LI
Received:
Revised:
Online:
Published:
Contact:
石洪波,柳亚琴,李爱军
通讯作者:
作者简介:
基金资助:
Abstract: Concerning the characteristics of Bayesian networks classifier, a discriminative parameter learning algorithm of Bayesian networks classifier based on parameters ensemble named PEBNC was proposed to improve the classification performance of Bayesian classifier. This algorithm regarded the parameter learning as a regression problem, applied the additive regression model to the parameter learning of Bayesian networks classifier, and realized a discriminative parameter learning of Bayesian networks classifier. The experimental results indicate that the PEBNC classifier can improve the classification performance in most cases. Furthermore, compared with the general Bayesian classifier ensemble, PEBNC requires less space because there is no need to save parameters of individual classifiers.
Key words: Bayesian network classifier, ensemble method, parameter learning, discriminative learning
摘要: 为了提高贝叶斯分类器的分类性能,针对贝叶斯网络分类器的构成特征,提出一种基于参数集成的贝叶斯分类器判别式参数学习算法PEBNC。该算法将贝叶斯分类器的参数学习视为回归问题,将加法回归模型应用于贝叶斯网络分类器的参数学习,实现贝叶斯分类器的判别式参数学习。实验结果表明,在大多数实验数据上,PEBNC能够明显提高贝叶斯分类器的分类准确率。此外,与一般的贝叶斯集成分类器相比,PEBNC不必存储成员分类器的参数,空间复杂度大大降低。
关键词: 贝叶斯网络分类器, 集成方法, 参数学习, 判别式学习
CLC Number:
TP181
Hong-bo SHI Ya-qin LIU Ai-jun LI. Discriminative parameter learning of Bayesian network classifier[J]. Journal of Computer Applications, 2011, 31(04): 1074-1078.
石洪波 柳亚琴 李爱军. 贝叶斯分类器的判别式参数学习[J]. 计算机应用, 2011, 31(04): 1074-1078.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.3724/SP.J.1087.2011.01074
https://www.joca.cn/EN/Y2011/V31/I04/1074