[1]UETZ P, GIOT L, CANGNEY G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae[J]. Nature, 2000, 403(6770):623-627.[2]GAVIN A C,BOESCHE M, KRAUSE R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes[J]. Nature, 2002, 415(6868):141-147.[3]ITO T, CHIBA T, OZAWA R, et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome[J]. Proceedings of the National Academy of Sciences, 2001, 98(8):4569-4574.[4]HO Y, GRUHLE A, HEILBUT A, et al. Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry[J]. Nature, 2002,415(6868):180-183.[5]IYER V R, HORAK C E, SCAFE C S, et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF[J]. Nature, 2001, 409(6819):533-538.[6]REN B, ROBERT F, WYRICK J J, et al. Genome-Wide location and function of DNA binding proteins[J]. Science, 2000, 290(5500):2306-2309.[7]SCHWEIGER R, LINIAL M, LINIAL N. Generative probabilistic models for protein-protein interaction networks — the biclique perspective[J]. Bioinformatics, 2011, 27(13): i142-i148.[8]刘中扬,李栋,朱云平,等. 蛋白质相互作用网络进化分析研究进展[J]. 生物化学与生物物理进展, 2009, 36(1):13-24.[9]高蕾,郭进利. 生物网络研究进展述评[J]. 生物信息学, 2011, 9(2):113-119.[10]陈润生. 与生物信息学相关的两个前沿方向——非编码基因和复杂生物网络[J]. 生物生理学报, 2007, 23(4):290-295.[11]SUN M G F, KIM P M. Evolution of biological interaction networks: from models to real data[J]. Genome Biology, 2011, 12(12):235.[12]ERDOS P, RENYI A. On random graphs[J]. Publications Mathematicae,1959(6):290-297.[13]WATTS D J, STROGATZ S H. Collective dynamics of ′small-world′ networks[J]. Nature, 1998, 393(6684):440-442.[14]CALDARELLI G, CAPOCCI A, RIOS L D P, et al. Scale-free networks from varying vertex intrinsic fitness[J]. Physical Review Letters, 2002, 89(25):258702.[15]BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.[16]EISENBERG E, LEVANON E Y. Preferential attachment in the protein network evolution[J]. Physical Review Letters, 2003, 91(13):138701.[17]JOY M P, BROCK A, INGBER D E, et al. High-betweenness proteins in the yeast protein interaction network[J]. Journal of Biomedicine & Biotechnology, 2005,2:96-103.[18]WAGNER A. How the global structure of protein interaction networks evolves[J]. Proceeds of Biological Sciences, 2003, 270(1514):457-466.[19]VAZQUEZ A, FLAMMINI A, MARITAN A, et al. Modeling of protein interaction networks[J]. Complexus, 2003, 1(1):38-44.[20]SOLE R V. PASTOR S R, SMITH E, et al. A model of large-scale proteome evolution[J]. Advances in Complex System, 2002, 5(1):43-54.[21]ISPOLATOV I, KRAPIVSKY P L, YURKEY A. Duplication-divergence model of protein interaction network[J]. Physical Review E: Statistical, Nonlinear and Soft Matter Physics, 2005, 71(6):61911.[22]EVLAMPIEV K, ISAMBERT H. Conservation and topology of protein interaction networks under duplication-divergence evolution[J]. Proceedings of National Academy of Science, 2008, 105(29):9863-9868.[23]TAKEMOTO K, OOSAWA C. Evolving networks by merging cliques[J]. Physical Review E: Statistical, Nonlinear and Soft Matter Physics, 2005,72(4):46116.[24]TAKEMOTO K, OOSAWA C. Modeling for evolving biological networks with scale-free connectivity, hierarchical modularity, and disassortativity[J]. Mathematical Biosciences, 2007, 208(2):454-468.[25]KIM W K, MARCOTTE E M. Age-dependent evolution of the yeast protein interaction network suggests a limited role of gene duplication and divergence[J]. PLoS Computational Biology, 2008, 4(11):e1000232.[26]SU X C, JIN X G, MIN Y, LI Y X. Estimating growth parameters for the drosophila melanogaster protein interaction network by a network comparison method based on breadth-first search [C]// 2010 International Conference on Intelligent Systems and Knowledge Engineering. Piscataway, NJ: IEEE Press, 2010: 344-348.[27]BOLLOBAS B. Random graphs[M].London: Academic Press, 1985.[28]BENDER E A, CANFIELD E R. The asymptotic number of labeled graphs with given degree sequences[J]. Journal of Combinatorial Theory, Series A, 1978, 24(3):296-307.[29]NEWMAN M E J, WATTS D J. Renormalization group analysis of the small-world network model[J]. Physical Letters A, 1999, 263:341-346.[30]KASTURIRANGAN R. Multiple scales in small-world graphs[R]. Cambridge: Massachusetts Institute of Technology, 1999.[31]KRAPIVSKY P L, REDNER S. Organization of growing random networks[J]. Physical Review E, 2001, 63(6):66123. |