Journal of Computer Applications ›› 2009, Vol. 29 ›› Issue (10): 2781-2785.

• Data mining • Previous Articles     Next Articles

Feature selection based on linear discriminant analysis

  

  • Received:2009-04-20 Revised:2009-06-08 Online:2009-10-28 Published:2009-10-01

基于线性判别分析的特征选择

崔自峰1,吉小华2   

  1. 1. 中国电子科技集团公司第二十八研究所
    2. 南京市地方税务局计算机中心
  • 通讯作者: 崔自峰

Abstract: The paper proposed a new approach of feature selection based on Constrained Linear Discriminant Analysis (CLDA), which modeled feature selection as a search problem in subspace and made optimal solution subject to some restrictions. Furthermore, CLDA optimization problem was transformed into a process of scoring and sorting features. Experiments on UCI machine learning repository and Reuters-21578 dataset show that the proposed approach can consistently obtain better results with fewer features than that with all features.

Key words: feature selection, Linear Discriminant Analysis (LDA), categorization

摘要: 提出一种新颖的基于特征抽取的特征选择方法,将特征选择问题建模为在子空间中的搜索问题,采用线形判别分析(LDA)的投影思想,对LDA施加一定的限制将其转换为对子空间的搜索优化问题,从而通过解LDA的优化问题得到特征选择的解,进一步把特征选择问题推导简化为对特征的评分和排序过程。通过在UCI机器学习库和Reuters-21578文本数据集上的实验,验证了该方法以较少的特征获得了比全部特征更好的分类结果。

关键词: 特征选择, 线性判别分析, 分类