[1] WEI H, WANG Y, FORMAN G, et al. Fast Viterbi map matching with tunable weight functions[C]//Proceedings of the 20th International Conference on Advances in Geographic Information Systems. New York:ACM, 2012:613-616. [2] MIWA T, KIUCHI D, YAMAMOTO T, et al. Development of map matching algorithm for low frequency probe data[J]. Transportation Research Part C:Emerging Technologies, 2012, 22(5):132-145. [3] DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica the International Journal for Geographic Information and Geovisualization, 1973, 10(2):112-122. [4] GHEMAWAT S, GOBIOFF H, LEUNG S T. The Google file system[J]. ACM SIGOPS Operating Systems Review, 2003, 37(5):29-43. [5] DEAN J, GHEMAWAT S. MapReduce:simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1):107-113. [6] YANG H, DASDAN A, HSIAO R L, et al. Map-reduce-merge:simplified relational data processing on large clusters[C]//Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2007:1029-1040. [7] ISARD M, BUDIU M, YU Y, et al. Dryad:distributed data-parallel programs from sequential building blocks[J]. ACM SIGOPS Operating Systems Review, 2007, 41(3):59-72. [8] OLSTON C, REED B, SRIVASTAVA U, et al. Pig latin:a not-so-foreign language for data processing[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2008:1099-1110. [9] KELLARIS G, PELEKIS N, THEODORIDIS Y. Trajectory compression under network constraints[C]//Proceedings of the 11th International Symposium on Advances in Spatial and Temporal Databases. Berlin:Springer, 2009:392-398. [10] GOTSMAN R, KANZA Y. Compact representation of GPS trajectories over vectorial road networks[C]//Proceedings of the 13th International Symposium Advances in Spatial and Temporal Databases. Berlin:Springer-Verlag, 2013:241-258. [11] YAN Z. Towards semantic trajectory data analysis:a conceptual and computational approach[C]//Proceedings of the VLDB 2009 PhD Workshop Co-located with the 35th International Conference on Very Large Data Bases. San Francisco, CA:Morgan Kaufmann, 2009:1-6. [12] SPACCAPIETRA S, PARENT C, DAMIANI M L, et al. A conceptual view on trajectories[J]. Data & Knowledge Engineering, 2008, 65(1):126-146. [13] MERATNIA N, BY R A D. Spatiotemporal compression techniques for moving point objects[C]//Proceedings of the 9th International Conference on Extending Database Technology. Berlin:Springer, 2004:765-782. [14] 张达夫, 张昕明. 基于时空特性的GPS轨迹数据压缩算法[J]. 交通信息与安全, 2013, 31(3):6-9.(ZHANG D F, ZHANG X M. GPS trajectory data compression algorithm based on the characteristics of time and space[J].Traffic Information and Security,2013,31(3):6-9.) [15] SUN P, XIA S, YUAN G, et al. An overview of moving object trajectory compression algorithms[J]. Mathematical Problems in Engineering, 2016, 2016(3):1-13. [16] KEOGH E, CHU S, HART D, et al. An online algorithm for segmenting time series[C]//Proceedings of the 2001 IEEE International Conference on Data Mining. Piscataway, NJ:IEEE, 2001:289-296. [17] 吴家皋, 刘敏, 韦光, 等. 一种改进的滑动窗口轨迹数据压缩算法[J]. 计算机技术与发展, 2015, 25(12):47-51.(WU J G, LIU M, WEI G, et al. An improved trajectory data compression algorithm of sliding window[J]. Computer Technology and Development, 2015, 25(12):47-51.) [18] HUANG J, QIAO S, YU H, et al. Parallel map matching on massive vehicle GPS data using MapReduce[C]//Proceedings of the 2013 IEEE 10th International Conference on High Performance Computing and Communications. Piscataway, NJ:IEEE, 2013:1498-1503. [19] LI D, HAITAO Y, ZHOU X, et al. Map-Reduce for calibrating massive bus trajectory data[C]//Proceedings of the 201313th International Conference on ITS Telecommunications. Piscataway, NJ:IEEE, 2013:44-49. [20] HU C, KANG X, LUO N, et al. Parallel clustering of big data of spatio-temporal trajectory[C]//Proceedings of the 201511th International Conference on Natural Computation. Piscataway, NJ:IEEE, 2015:769-774. |