[1] MORELLAS V, PAVLIDIS I, TSIAMYRTZIS P. DETER:detection of evens for threat evaluation and recognition[J]. Machine Vision and Applications, 2003, 15(1):29-45. [2] 张旭东,彭杰,纪军.基于熵的逼近于理想解的排序法空袭目标威胁度评估[J].计算机应用,2011,31(11):3140-3142.(ZHANG X D, PENG J, JI J. Air-raid target threat degree evaluation based on entropy TOPSIS method[J]. Journal of Computer Applications, 2011, 31(11):3140-3142.) [3] 张肃.空中目标威胁评估技术[J].情报指挥控制系统与仿真技术,2005,27(1):41-45.(ZHANG S. Evaluation technology of the aerial targets' threat[J]. Information Command Control System & Simulation Technology, 2005, 27(1):41-45.) [4] 马其东,方立恭.海上区域防空目标威胁评估模型[J].现代防御技术,2009,37(1):15-19.(MA Q D, FANG L G. Research on threat assessment model of air target for area air defense[J]. Modern Defence Technology, 2009, 37(1):15-19.) [5] 胡起伟,石全,王广彦,等.基于神经网络的威胁评估研究[J].计算机仿真,2006,23(6):25-27.(HU Q W, SHI Q, WANG G Y, et al. Threat assessment based on neural network[J]. Computer Simulation, 2006, 23(6):25-27.) [6] 张发强,由大德,蒋敏.基于RBF神经网络的空袭目标威胁评估模型研究[J].舰船电子对抗,2010,33(6):85-88.(ZHANG F Q, YOU D D, JIANG M. Study of the threat assessment model for air raid targets based on RBF neural network[J]. Shipboard Electronic Countermeasure, 2010, 33(6):85-88.) [7] 郭辉,徐浩军,刘凌. 基于回归型支持向量机的空战目标威胁评估[J].北京航空航天大学学报,2010,36(1):123-126.(GUO H, XU H J, LIU L. Target threat assessment of air combat based on support vector machines for regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1):123-126.) [8] 郭辉,吕英军,王平,等.基于区间支持向量回归的空战目标威胁评估[J].火力与指挥控制,2014,39(8):17-21.(GUO H, LYU Y J, WANG P, et al. Target threat assessment of air combat based on intervals and SVR[J]. Fire Control & Command Control, 2014, 39(8):17-21.) [9] 谷文成,柴宝仁,滕艳平.基于粒子群优化算法的支持向量机研究[J].北京理工大学学报,2014,34(7):705-709.(GU W C, CHAI B R, TENG Y P. Research on support vector machine based on particle swarm optimization[J]. Transactions of Beijing Institute of Technology, 2014, 34(7):705-709.) [10] BANSAL J C, SINGH P K, SARASWAT M, et al. Inertia weight strategies in particle swarm optimization[C]//Proceedings of the 20113rd World Congress on Nature and Biologically Inspired Computing. Piscataway, NJ:IEEE, 2011:633-469. [11] 王江荣,文晖,任泰明.基于杂交粒子群算法的多元线性回归参数估计及预测区间研究[J].水泥工程,2014(5):6-9.(WANG J R, WEN H, REN T M. Multiple linear regression parameters estimation and prediction intervals research based on hybrid particle swarm optimization[J]. Cement Engineering, 2014(5):6-9.) [12] SUYKENS J A K, LUKAS L, VANDEWALLE J. Sparse least squares support vecter machines for adaptive communication channel equalization[J]. International Journal of Applied Science and Engineering, 2005, 11(3):51-59. [13] FENG Y, TENG G F, WANG A X, et al. Chaotic inertia weight in particle swarm optimization[C]//Proceedings of the 20072nd International Conference on Innovative Computing, Information and Control. Piscataway, NJ:IEEE, 2007:475-476. [14] 李蓉,沈云波,刘坚.改进的自适应粒子群优化算法[J].计算机工程与应用,2015,51(13):31-36.(LI R, SHEN Y B, LIU J. Improved adaptive particle swarm optimization algorithm[J]. Computer Engineering and Applications, 2015, 51(13):31-36.) [15] LØVBJERG M, RASMUSSEN T K, KRINK T. Hybrid particle swarm optimiser with breeding and subpopulations[C]//Proceedings of International Conference on Genetic and Evolutionary Computation Conference.San Francisco:Morgan Kaufmann,2001:101-106. |