Journal of Computer Applications ›› 2020, Vol. 40 ›› Issue (11): 3217-3223.DOI: 10.11772/j.issn.1001-9081.2020050672

• Data science and technology • Previous Articles     Next Articles

Gaussian mixture clustering algorithm combining elbow method and expectation-maximization for power system customer segmentation

CHEN Yu1, TIAN Bojin2, PENG Yunzhu2, LIAO Yong3   

  1. 1. Information Communication Branch Company, Chongqing Guanghui Power Supply Service Company Limited, Chongqing 400014, China;
    2. Information Communication Branch Company, State Grid Chongqing Electric Power Company, Chongqing 401120, China;
    3. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400444, China
  • Received:2020-05-20 Revised:2020-07-22 Online:2020-11-10 Published:2020-08-14
  • Supported by:
    This work is partially supported by the Science and Technology Project of State Grid Chongqing Electric Power Company (2019 Yudian Technology 29#).

联合手肘法和期望最大化的高斯混合聚类电力系统客户分群算法

陈聿1, 田博今2, 彭云竹2, 廖勇3   

  1. 1. 重庆广汇供电服务有限责任公司 信息通信分公司, 重庆 400014;
    2. 国网重庆市电力公司 信息通信分公司, 重庆 401120;
    3. 重庆大学 微电子与通信工程学院, 重庆 400044
  • 通讯作者: 廖勇(1982-),男,四川自贡人,副研究员,博士,CCF杰出会员,主要研究方向:移动通信、人工智能;liaoy@cqu.edu.cn
  • 作者简介:陈聿(1983-),女,上海人,工程师,主要研究方向:通信工程;田博今(1985-),男,重庆人,工程师,硕士,主要研究方向:电力信息通信运行;彭云竹(1992-),重庆人,女,工程师,主要研究方向:信息技术、项目管理
  • 基金资助:
    国网重庆市电力公司科学技术项目(2019渝电科技29#)。

Abstract: In order to further improve the user experience of power system customers, and aiming at the problems of poor optimization ability, lack of compactness and difficulty in solving the optimal number of clusters, a Gaussian mixture clustering algorithm combining elbow method and Expectation-Maximization (EM) was proposed, which can mine the potential information in a large number of customer data. The good clustering results were obtained by EM algorithm iteration. Aiming at the shortcoming of the traditional Gaussian mixture clustering algorithm that needs to obtain the number of user clusters in advance, the number of customer clusters was reasonably found by using elbow method. The case study shows that compared with hierarchical clustering algorithm and K-Means algorithm, the proposed algorithm has the increase of both FM (Fowlkes-Mallows) and AR (Adjusted-Rand) indexes more than 10%, and the decrease of Compactness Index (CI) and Degree of Separation (DS) less than 15% and 25% respectively. It can be seen that the performance of the algorithm is greatly improved.

Key words: power system, customer segmentation, Gaussian mixture model clustering, accurate service, Expectation-Maximization (EM), elbow method

摘要: 为进一步提升电力系统客户的用户体验,针对现有聚类算法寻优能力差、紧凑性不足以及较难求解聚类数目最优值的问题,提出一种联合手肘法与期望最大化(EM)的高斯混合聚类算法,挖掘大量客户数据中的潜在信息。该算法通过EM算法迭代出良好的聚类结果,而针对传统的高斯混合聚类算法需要提前获取用户分群数量的缺点,利用手肘法合理找出客户的分群数量。案例分析表明,所提算法与层次聚类算法和K-Means算法相比,FM、AR指标的增幅均超过10%,紧凑度(CI)和分离度(DS)的降幅分别低于15%和25%,可见性能有较大提升。

关键词: 电力系统, 客户分群, 高斯混合模型聚类, 精准服务, 期望最大化, 手肘法

CLC Number: