| 1 | JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.  10.1126/science.aaa8415 | 
																													
																							| 2 | YU J H, HUANG T. Universally slimmable networks and improved training techniques[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1803-1811.  10.1109/iccv.2019.00189 | 
																													
																							| 3 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255.  10.1109/cvpr.2009.5206848 | 
																													
																							| 4 | 李青坪. 面向分布式深度学习的集群资源调度优化技术研究[D]. 南京:南京大学, 2020:1-3.  10.29026/oea.2022.210021 | 
																													
																							|  | LI Q P. Research on cluster resource scheduling optimization for distributed deep learning[D]. Nanjing: Nanjing University, 2020: 1-3.  10.29026/oea.2022.210021 | 
																													
																							| 5 | PETEIRO-BARRAL D, GUIJARRO-BERDIÑAS B. A survey of methods for distributed machine learning[J]. Progress in Artificial Intelligence, 2013, 2(1): 1-11.  10.1007/s13748-012-0035-5 | 
																													
																							| 6 | LI M, ANDERSEN D G, PARK J W, et al. Scaling distributed machine learning with the parameter server[C]// Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2014: 583-598.  10.1145/2640087.2644155 | 
																													
																							| 7 | 王丹. 分布式机器学习集群的资源调度机制研究[D]. 成都:电子科技大学, 2020:6-15. | 
																													
																							|  | WANG D. Research on resource scheduling mechanism of distributed machine learning cluster[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 6-15. | 
																													
																							| 8 | WEN L, LI X Y, GAO L. A transfer convolutional neural network for fault diagnosis based on ResNet-50[J]. Neural Computing and Applications, 2020, 32(10): 6111-6124.  10.1007/s00521-019-04097-w | 
																													
																							| 9 | ALIPPI C, DISABATO S, ROVERI M. Moving convolutional neural networks to embedded systems: the AlexNet and VGG-16 case[C]// Proceedings of the 17th ACM/IEEE International Conference on Information Processing in Sensor Networks. Piscataway: IEEE, 2018: 212-223.  10.1109/ipsn.2018.00049 | 
																													
																							| 10 | ABADI M, BARHAM P, CHEN J M, et al. TensorFlow: a system for large-scale machine learning[C]// Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2016: 265-283. | 
																													
																							| 11 | PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2021-05-11]..  10.48550/arXiv.1912.01703 | 
																													
																							| 12 | GU J C, CHOWDHURY M, SHIN K G, et al. Tiresias: a GPU cluster manager for distributed deep learning[C]// Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2019: 485-500. | 
																													
																							| 13 | PENG Y H, BAO Y X, CHEN Y R, et al. Optimus: an efficient dynamic resource scheduler for deep learning clusters[C]// Proceedings of the 13th European Conference on Computer Systems. New York: ACM, 2018: No.3.  10.1145/3190508.3190517 | 
																													
																							| 14 | MAHAJAN K, BALASUBRAMANIAN A, SINGHVI A, et al. THEMIS: fair and efficient GPU cluster scheduling[C]// Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2020: 289-304. | 
																													
																							| 15 | LI H L, SUN T, LI X, et al. Job placement strategy with opportunistic resource sharing for distributed deep learning clusters[C]// Proceedings of the IEEE 22nd International Conference on High Performance Computing and Communications/ IEEE 18th International Conference on Smart City/ IEEE 6th International Conference on Data Science and Systems. Piscataway: IEEE, 2020: 620-627.  10.1109/hpcc-smartcity-dss50907.2020.00079 | 
																													
																							| 16 | TRANMER M, ELLIOT M. Multiple linear regression[R/OL]. [2021-05-11]..  10.1007/978-1-4020-5614-7_2254 | 
																													
																							| 17 | WAUTERS M, VANHOUCKE M. Support vector machine regression for project control forecasting[J]. Automation in Construction, 2014, 47: 92-106.  10.1016/j.autcon.2014.07.014 | 
																													
																							| 18 | LOH W Y. Classification and regression tree methods[M]// RUGGERI F, KENETT R S, FALTIN F W. Encyclopedia of Statistics in Quality and Reliability. Hoboken, NJ: John Wiley & Sons, Inc., 2008: 315-323. | 
																													
																							| 19 | HAMERLY G, ELKAN C. Learning the k in k-means[C]// Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2003: 281-288. | 
																													
																							| 20 | JACKSON D. Employability skill development in work-integrated learning: barriers and best practice[J]. Studies in Higher Education, 2015, 40(2): 350-367.  10.1080/03075079.2013.842221 | 
																													
																							| 21 | LeCUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.  10.1038/nature14539 | 
																													
																							| 22 | GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222-2232.  10.1109/tnnls.2016.2582924 |