Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (7): 2227-2238.DOI: 10.11772/j.issn.1001-9081.2021050882
• Multimedia computing and computer simulation • Previous Articles Next Articles
Shangwang LIU1,2(), Xinming ZHANG1,2, Fei ZHANG1,2
Received:
2021-05-27
Revised:
2021-11-24
Accepted:
2021-12-21
Online:
2022-03-08
Published:
2022-07-10
Contact:
Shangwang LIU
About author:
ZHANG Xinming, born in 1963, M. S., professor. His research interests include intelligent optimization algorithm, image segmentation.Supported by:
通讯作者:
刘尚旺
作者简介:
张新明(1963—),男,湖北孝感人,教授,硕士,CCF会员,主要研究方向:智能优化算法、图像分割基金资助:
CLC Number:
Shangwang LIU, Xinming ZHANG, Fei ZHANG. Image character editing method based on improved font adaptive neural network[J]. Journal of Computer Applications, 2022, 42(7): 2227-2238.
刘尚旺, 张新明, 张非. 改进字体自适应神经网络的图像字符编辑方法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2227-2238.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021050882
方法 | 评价指标 | ||
---|---|---|---|
NRMSE | PSNR/dB | ASSIMRGB | |
MC-GAN(输入字符数为1) | 0.457 2 | 14.785 4 | 0.596 2 |
MC-GAN(输入字符数大于等于3) | 0.370 4 | 18.587 4 | 0.790 2 |
STEFANN | 0.449 1 | 16.069 2 | 0.654 8 |
本文方法 | 0.435 8 | 18.321 1 | 0.776 5 |
Tab. 1 Results of different methods on quantitative evaluation indices
方法 | 评价指标 | ||
---|---|---|---|
NRMSE | PSNR/dB | ASSIMRGB | |
MC-GAN(输入字符数为1) | 0.457 2 | 14.785 4 | 0.596 2 |
MC-GAN(输入字符数大于等于3) | 0.370 4 | 18.587 4 | 0.790 2 |
STEFANN | 0.449 1 | 16.069 2 | 0.654 8 |
本文方法 | 0.435 8 | 18.321 1 | 0.776 5 |
1 | 范一华,邓德祥,颜佳.基于色彩空间的最大稳定极值区域的自然场景文本检测[J].计算机应用,2018,38(1):264-269,294. 10.11772/j.issn.1001-9081.2017061389 |
FAN Y H, DENG D X, YAN J. Natural scene text detection based on maximally stable extremal region in color space [J]. Journal of Computer Applications, 2018, 38(1): 264-269, 294. 10.11772/j.issn.1001-9081.2017061389 | |
2 | 张矿,朱远平.基于超像素融合的文本分割[J].计算机应用,2016,36(12):3418-3422. 10.11772/j.issn.1001-9081.2016.12.3418 |
ZHANG K, ZHU Y P. Text segmentation based on superpixel fusion [J]. Journal of Computer Applications, 2016, 36(12): 3418-3422. 10.11772/j.issn.1001-9081.2016.12.3418 | |
3 | CAMPBELL N D F, KAUTZ J. Learning a manifold of fonts [J]. ACM Transactions on Graphics, 2014, 33(4): Article No.91. 10.1145/2601097.2601212 |
4 | PHAN H Q, FU H, CHAN A B. FlexyFont: learning transferring rules for flexible typeface synthesis [J]. Computer Graphics Forum, 2015, 34(7): 245-256. 10.1111/cgf.12763 |
5 | LIAO J, YAO Y, YUAN L, et al. Visual attribute transfer through deep image analogy [J]. ACM Transactions on Graphics, 2017, 36(4): Article No.120. 10.1145/3072959.3073683 |
6 | GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2414-2423. 10.1109/cvpr.2016.265 |
7 | LYU P Y, BAI X, YAO C, et al. Auto-encoder guided GAN for Chinese calligraphy synthesis [C]// Proceedings of the 2017 14th IAPR International Conference on Document Analysis and Recognition. Piscataway: IEEE, 2017: 1095-1100. 10.1109/icdar.2017.181 |
8 | SHAMIR A, RAPPOPORT A. Feature-based design of fonts using constraints [C]// Proceedings of the 1998 International Conference on Raster Imaging and Digital Typography, LNCS 1375. Berlin: Springer, 1998: 93-108. |
9 | SUVEERANONT R, IGARASHI T. Example-based automatic font generation [C]// Proceedings of the 2010 International Symposium on Smart Graphics, LNCS 6133. Berlin: Springer, 2010: 127-138. |
10 | TENENBAUM J B, FREEMAN W T. Separating style and content with bilinear models [J]. Neural Computation, 2000, 12(6): 1247-1283. 10.1162/089976600300015349 |
11 | BALUJA S. Learning typographic style: from discrimination to synthesis [J]. Machine Vision and Applications, 2017, 28(5/6): 551-568. 10.1007/s00138-017-0842-6 |
12 | BERNHARDSSON E. Analyzing 50k fonts using deep neural networks [EB/OL]. [2021-03-03]. . |
13 | AZADI S, FISHER M, KIM V, et al. Multi-content GAN for few-shot font style transfer [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7564-7573. 10.1109/cvpr.2018.00789 |
14 | BUŠTA M, NEUMANN L, MATAS J. Deep TextSpotter: an end-to-end trainable scene text localization and recognition framework [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2223-2231. 10.1109/iccv.2017.242 |
15 | KEVIN K. Project Naptha [EB/OL]. [2021-03-03]. . |
16 | 吴亮.基于GAN的文字编辑技术的研究[D].武汉:华中科技大学,2019:7-17. |
WU L. Research on text editing technology based on GAN [D]. Wuhan: Huazhong University of Science and Technology, 2019: 7-17. | |
17 | ROY P, BHATTACHARYA S, GHOSH S, et al. STEFANN: scene text editor using font adaptive neural network [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13225-13234. 10.1109/cvpr42600.2020.01324 |
18 | EGMONT-PETERSEN M, DE RIDDER D, HANDELS H. Image processing with neural networks — a review [J]. Pattern recognition, 2002, 35(10): 2279-2301. 10.1016/s0031-3203(01)00178-9 |
19 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]// Proceedings of the 2014 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680. |
20 | DOSOVITSKIY A, SPRINGENBERG J T, TATARCHENKO M, et al. Learning to generate chairs, tables and cars with convolutional networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 692-705. |
21 | CHEN H Z, TSAI S S, SCHROTH G, et al. Robust text detection in natural images with edge-enhanced maximally stable extremal regions [C]// Proceedings of the 2011 18th IEEE International Conference on Image Processing. Piscataway: IEEE, 2011: 2609-2612. 10.1109/icip.2011.6116200 |
22 | CHENG M M, MITRA N J, HUANG X L, et al. Global contrast based salient region detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569-582. 10.1109/tpami.2014.2345401 |
23 | OTSU N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. 10.1109/tsmc.1979.4310076 |
24 | KARATZAS D, SHAFAIT F, UCHIDA S, et al. ICDAR 2013 robust reading competition [C]// Proceedings of the 2013 12th International Conference on Document Analysis and Recognition. Piscataway: IEEE, 2013: 1484-1493. 10.1109/icdar.2013.221 |
25 | Inc Google. Google fonts [EB/OL]. [2021-03-03]. . |
26 | KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2021-03-03]. . |
27 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. 10.1109/tip.2003.819861 |
28 | SMITH R. An overview of the tesseract OCR engine [C]// Proceedings of the 2007 9th International Conference on Document Analysis and Recognition. Piscataway: IEEE, 2007: 629-633. 10.1109/icdar.2007.4376991 |
[1] | YANG Su YANG Zhaozhong. Image inpainting using reference image texture and distress image color [J]. Journal of Computer Applications, 2014, 34(6): 1724-1726. |
[2] | . Color fusion method for night vision based on YUV space [J]. Journal of Computer Applications, 2010, 30(12): 3222-3224. |
[3] | . Color transfer method with multi-source images [J]. Journal of Computer Applications, 2010, 30(11): 3015-3018. |
[4] | . New color transferring algorithm based on multidimensional eigenvector and ANN searching technology [J]. Journal of Computer Applications, 2006, 26(12): 2866-2868. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||