Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 636-644.DOI: 10.11772/j.issn.1001-9081.2021122085
• Frontier and comprehensive applications • Previous Articles Next Articles
Received:
2021-12-14
Revised:
2022-04-13
Accepted:
2022-04-19
Online:
2022-08-03
Published:
2023-02-10
Contact:
Min ZHANG, Xiaolong HAN
Supported by:
通讯作者:
张敏,韩晓龙
基金资助:
CLC Number:
Min ZHANG, Xiaolong HAN. Low-carbon multimodal transportation path optimization based on multi-objective fuzzy chance-constrained programming[J]. Journal of Computer Applications, 2023, 43(2): 636-644.
张敏, 韩晓龙. 多目标模糊机会约束规划的低碳多式联运路径优化[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 636-644.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021122085
参数 | 说明 |
---|---|
运输网络节点集合 | |
中间节点集合 | |
运输方式集合 | |
运输任务的起点 | |
运输任务的终点 | |
运输方式 | |
运输方式 | |
碳税值 | |
货物到达节点j的时间 | |
客户对送达时间的满意度 | |
最低客户满意度 | |
运输方式 | |
客户的模糊需求量 | |
运输方式 | |
采用运输方式 | |
运输方式由 | |
运输方式由 | |
运输方式由 | |
客户能够容忍货物到达的最早时间 | |
客户能够容忍货物到达的最晚时间 | |
客户最期待货物到达的最早时间 | |
客户最期待货物到达的最晚时间 |
Tab. 1 Parameter description
参数 | 说明 |
---|---|
运输网络节点集合 | |
中间节点集合 | |
运输方式集合 | |
运输任务的起点 | |
运输任务的终点 | |
运输方式 | |
运输方式 | |
碳税值 | |
货物到达节点j的时间 | |
客户对送达时间的满意度 | |
最低客户满意度 | |
运输方式 | |
客户的模糊需求量 | |
运输方式 | |
采用运输方式 | |
运输方式由 | |
运输方式由 | |
运输方式由 | |
客户能够容忍货物到达的最早时间 | |
客户能够容忍货物到达的最晚时间 | |
客户最期待货物到达的最早时间 | |
客户最期待货物到达的最晚时间 |
变量 | 说明 |
---|---|
采用运输方式 | |
在节点 |
Tab. 2 Decision variables
变量 | 说明 |
---|---|
采用运输方式 | |
在节点 |
运输方式 | 公路 | 铁路 | 水路 |
---|---|---|---|
公路 | 0; 0; 0 | 8;1;0.128 | 9; 2; 0.117 |
铁路 | 8; 1; 0.128 | 0; 0; 0 | 10; 3; 0.113 |
水路 | 9; 2; 0.117 | 10; 3; 0.113 | 0; 0; 0 |
Tab. 3 Transportation mode parameters
运输方式 | 公路 | 铁路 | 水路 |
---|---|---|---|
公路 | 0; 0; 0 | 8;1;0.128 | 9; 2; 0.117 |
铁路 | 8; 1; 0.128 | 0; 0; 0 | 10; 3; 0.113 |
水路 | 9; 2; 0.117 | 10; 3; 0.113 | 0; 0; 0 |
运输 方式 | 平均速度/(km·h-1) | 单位费用/ (元·km-1·t-1) | 固定费用/元 | 单位碳排量/ (kg·km-1·t-1) |
---|---|---|---|---|
公路 | 80 | 0.162 | 80 | 0.044 0 |
铁路 | 60 | 0.491 | 160 | 0.012 7 |
水路 | 30 | 0.462 | 300 | 0.009 1 |
Tab. 4 Parameters of different modes of transportation
运输 方式 | 平均速度/(km·h-1) | 单位费用/ (元·km-1·t-1) | 固定费用/元 | 单位碳排量/ (kg·km-1·t-1) |
---|---|---|---|---|
公路 | 80 | 0.162 | 80 | 0.044 0 |
铁路 | 60 | 0.491 | 160 | 0.012 7 |
水路 | 30 | 0.462 | 300 | 0.009 1 |
任务序号 | 节点数 | 起点-终点 | 需求量/t | 终点时间窗/h |
---|---|---|---|---|
1 | 10 | 1-10 | [65,70,78,88] | [ |
2 | 20 | 1-20 | [ | |
3 | 30 | 1-30 | [ | |
4 | 40 | 1-40 | [ | |
5 | 50 | 1-50 | [ |
Tab. 5 Order-related information parameters
任务序号 | 节点数 | 起点-终点 | 需求量/t | 终点时间窗/h |
---|---|---|---|---|
1 | 10 | 1-10 | [65,70,78,88] | [ |
2 | 20 | 1-20 | [ | |
3 | 30 | 1-30 | [ | |
4 | 40 | 1-40 | [ | |
5 | 50 | 1-50 | [ |
网络节点数 | DOCPLEX | 自适应NSGA-Ⅱ | 差距百分比/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Z1min | Z2min | Z3max | 运行时间/s | Z1 | Z2 | Z3 | 运行时间/s | gap1 | gap2 | gap3 | |
10 | 3.562 | 3 060.80 | 1.000 | 0.788 | 4.014 | 3 325.96 | 0.962 | 1.524 | 12.69 | 8.66 | 4 |
20 | 3.385 | 3 736.96 | 1.000 | 6.048 | 3.913 | 3 955.20 | 1.000 | 5.991 | 15.60 | 5.84 | 0 |
30 | 7.229 | 8 081.52 | 1.000 | 20.420 | 8.066 | 8 452.54 | 1.000 | 16.284 | 11.58 | 4.59 | 0 |
40 | 2.682 | 5 125.95 | 1.000 | 50.220 | 3.487 | 5 599.38 | 1.000 | 21.843 | 30.01 | 9.24 | 0 |
50 | 5.075 | 7 525.76 | 1.000 | 92.644 | 6.133 | 8 143.89 | 0.985 | 32.977 | 20.85 | 8.21 | 2 |
Tab. 6 Comparison of solution results between DOCPLEX and adaptive NSGA-Ⅱ
网络节点数 | DOCPLEX | 自适应NSGA-Ⅱ | 差距百分比/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Z1min | Z2min | Z3max | 运行时间/s | Z1 | Z2 | Z3 | 运行时间/s | gap1 | gap2 | gap3 | |
10 | 3.562 | 3 060.80 | 1.000 | 0.788 | 4.014 | 3 325.96 | 0.962 | 1.524 | 12.69 | 8.66 | 4 |
20 | 3.385 | 3 736.96 | 1.000 | 6.048 | 3.913 | 3 955.20 | 1.000 | 5.991 | 15.60 | 5.84 | 0 |
30 | 7.229 | 8 081.52 | 1.000 | 20.420 | 8.066 | 8 452.54 | 1.000 | 16.284 | 11.58 | 4.59 | 0 |
40 | 2.682 | 5 125.95 | 1.000 | 50.220 | 3.487 | 5 599.38 | 1.000 | 21.843 | 30.01 | 9.24 | 0 |
50 | 5.075 | 7 525.76 | 1.000 | 92.644 | 6.133 | 8 143.89 | 0.985 | 32.977 | 20.85 | 8.21 | 2 |
网络 节点数 | 自适应NSGA-Ⅱ | NSGA-Ⅱ | 差距百分比/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Z1 | Z2 | Z3 | 运行时间/s | 运行时间/s | gap4 | gap5 | gap6 | ||||
10 | 4.014 | 3 325.96 | 0.962 | 1.524 | 5.114 | 3 905.22 | 0.943 | 1.483 | 27.40 | 17.42 | -2 |
20 | 3.913 | 3 955.20 | 1.000 | 5.991 | 4.753 | 4 478.25 | 0.970 | 5.786 | 21.47 | 13.22 | -3 |
30 | 8.066 | 8 452.54 | 1.000 | 16.284 | 10.030 | 9 182.34 | 1.000 | 16.113 | 24.35 | 8.63 | 0 |
40 | 3.487 | 5 599.38 | 1.000 | 21.843 | 4.762 | 6 215.47 | 1.000 | 21.477 | 36.56 | 11.00 | 0 |
50 | 6.133 | 8 143.89 | 0.985 | 32.977 | 7.784 | 8 799.48 | 0.976 | 31.849 | 26.92 | 8.05 | -1 |
Tab. 7 Comparison of solution results between NSGA-Ⅱ and adaptive NSGA-Ⅱ
网络 节点数 | 自适应NSGA-Ⅱ | NSGA-Ⅱ | 差距百分比/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Z1 | Z2 | Z3 | 运行时间/s | 运行时间/s | gap4 | gap5 | gap6 | ||||
10 | 4.014 | 3 325.96 | 0.962 | 1.524 | 5.114 | 3 905.22 | 0.943 | 1.483 | 27.40 | 17.42 | -2 |
20 | 3.913 | 3 955.20 | 1.000 | 5.991 | 4.753 | 4 478.25 | 0.970 | 5.786 | 21.47 | 13.22 | -3 |
30 | 8.066 | 8 452.54 | 1.000 | 16.284 | 10.030 | 9 182.34 | 1.000 | 16.113 | 24.35 | 8.63 | 0 |
40 | 3.487 | 5 599.38 | 1.000 | 21.843 | 4.762 | 6 215.47 | 1.000 | 21.477 | 36.56 | 11.00 | 0 |
50 | 6.133 | 8 143.89 | 0.985 | 32.977 | 7.784 | 8 799.48 | 0.976 | 31.849 | 26.92 | 8.05 | -1 |
订单号 | 起点-终点 | 需求量/t | 终点时间窗/h |
---|---|---|---|
1 | 1-21 | [50, 60, 65, 80] | [ |
2 | 1-30 | [155, 165, 176, 181] | [ |
3 | 2-20 | [180, 198, 210, 220] | [ |
4 | 3-18 | [60, 72, 86, 96] | [ |
5 | 5-27 | [118, 126, 140, 150] | [ |
6 | 8-30 | [208, 220, 230, 240] | [ |
7 | 9-19 | [105,110,118,138] | [ |
8 | 12-22 | [220, 228, 240, 250] | [ |
9 | 14-16 | [78, 88, 100, 115] | [ |
10 | 15-28 | [314, 325, 340, 350] | [ |
Tab. 8 Transportation order parameters
订单号 | 起点-终点 | 需求量/t | 终点时间窗/h |
---|---|---|---|
1 | 1-21 | [50, 60, 65, 80] | [ |
2 | 1-30 | [155, 165, 176, 181] | [ |
3 | 2-20 | [180, 198, 210, 220] | [ |
4 | 3-18 | [60, 72, 86, 96] | [ |
5 | 5-27 | [118, 126, 140, 150] | [ |
6 | 8-30 | [208, 220, 230, 240] | [ |
7 | 9-19 | [105,110,118,138] | [ |
8 | 12-22 | [220, 228, 240, 250] | [ |
9 | 14-16 | [78, 88, 100, 115] | [ |
10 | 15-28 | [314, 325, 340, 350] | [ |
订单号 | 路径 | 运输方式 | 满意度 | 碳排放成本/元 | 运输成本/元 |
---|---|---|---|---|---|
1 | 1-20-21 | 公-公 | 0.977 | 35.500 0 | 1 031.366 |
2 | 1-21-26-30 | 公-公-公-公 | 1.000 | 103.620 0 | 9 983.371 |
3 | 2-20 | 公 | 0.956 | 88.923 0 | 2 229.934 |
4 | 3-19-18 | 公-公-公 | 1.000 | 37.170 0 | 1 072.427 |
5 | 5-17-28-27 | 公-公-公-公 | 1.000 | 74.977 0 | 2 080.320 |
6 | 8-10-2-11-18-30 | 公-公-公-公-公 | 1.000 | 130.943 0 | 3 741.217 |
7 | 9-12-19 | 公-公 | 1.000 | 48.473 3 | 1 349.793 |
8 | 12-18-22 | 公-公 | 1.000 | 104.297 0 | 2 720.021 |
9 | 14-19-16 | 公-公 | 1.000 | 27.873 0 | 844.126 |
10 | 15-2-28 | 公-公 | 1.000 | 149.427 0 | 3 827.744 |
Tab. 9 Solution results of different orders
订单号 | 路径 | 运输方式 | 满意度 | 碳排放成本/元 | 运输成本/元 |
---|---|---|---|---|---|
1 | 1-20-21 | 公-公 | 0.977 | 35.500 0 | 1 031.366 |
2 | 1-21-26-30 | 公-公-公-公 | 1.000 | 103.620 0 | 9 983.371 |
3 | 2-20 | 公 | 0.956 | 88.923 0 | 2 229.934 |
4 | 3-19-18 | 公-公-公 | 1.000 | 37.170 0 | 1 072.427 |
5 | 5-17-28-27 | 公-公-公-公 | 1.000 | 74.977 0 | 2 080.320 |
6 | 8-10-2-11-18-30 | 公-公-公-公-公 | 1.000 | 130.943 0 | 3 741.217 |
7 | 9-12-19 | 公-公 | 1.000 | 48.473 3 | 1 349.793 |
8 | 12-18-22 | 公-公 | 1.000 | 104.297 0 | 2 720.021 |
9 | 14-19-16 | 公-公 | 1.000 | 27.873 0 | 844.126 |
10 | 15-2-28 | 公-公 | 1.000 | 149.427 0 | 3 827.744 |
订单号 | 碳税值 | 路径 | 运输方式 | 订单号 | 碳税值 | 路径 | 运输方式 |
---|---|---|---|---|---|---|---|
1 | 0~0.05 | 1-20-21 | 公-公 | 6 | 0~0.05 | 8-10-2-11-18-30 | 公-公-公-公-公 |
0.1 | 1-20-21 | 公-公 | 0.1 | 8-12-30 | 公-水 | ||
0.3 | 1-15-25-21 | 公-公-水 | 0.3 | 8-22-30 | 水-水 | ||
0.5~0.7 | 1-7-21 | 水-铁 | 0.5~0.7 | 8-13-30 | 水-水 | ||
0.9~1.1 | 1-5-21 | 水-铁 | 0.9~1.7 | 8-27-30 | 水-水 | ||
1.3~1.9 | 1-10-21 | 水-水 | 1.9 | 8-9-30 | 水-水 | ||
2 | 0~0.05 | 1-21-26-30 | 公-公-公-公 | 7 | 0~0.05 | 9-12-19 | 公-公 |
0.1 | 1-24-30 | 水-公 | 0.1 | 9-11-26-19 | 公-公-公 | ||
0.3~0.5 | 1-29-30 | 水-水 | 0.3~0.5 | 9-27-19 | 水-公 | ||
0.9~1.9 | 1-23-30 | 水-水 | 0.7 | 9-18-19 | 公-水 | ||
3 | 0~0.05 | 2-20 | 公 | 0.9~1.1 | 9-24-19 | 水-铁 | |
0.1 | 2-28-20 | 公-公 | 1.3~1.9 | 9-13-19 | 铁-铁 | ||
0.3 | 2-12-20 | 公-水 | 8 | 0~0.05 | 12-18-22 | 公-公 | |
0.5 | 2-24-20 | 公-水 | 0.1 | 12-8-2-22 | 公-公-公 | ||
0.7 | 2-18-20 | 公-水 | 0.3~0.5 | 12-23-22 | 铁-铁 | ||
0.9 | 2-5-20 | 公-水 | 0.7~0.9 | 12-24-22 | 铁-铁 | ||
1.1~1.9 | 2-26-20 | 水-铁 | 1.1~1.9 | 12-5-13-22 | 公-铁-水 | ||
4 | 0~0.05 | 3-19-18 | 公-公 | 9 | 0~0.05 | 14-19-16 | 公-公 |
0.1 | 3-30-18 | 公-公 | 0.1 | 14-11-16 | 公-公 | ||
0.3~0.5 | 3-9-18 | 水-公 | 0.3 | 14-18-3-16 | 公-公-公 | ||
0.7 | 3-26-9-18 | 公-公-水 | 0.5~0.9 | 14-10-16 | 铁-公 | ||
0.9 | 3-16-18 | 公-铁 | 1.1~1.3 | 14-22-28-16 | 铁-铁-铁 | ||
1.1 | 3-5-18 | 铁-铁 | 1.5~1.9 | 14-9-16 | 铁-公 | ||
1.3 | 3-8-18 | 铁-铁 | 10 | 0~0.05 | 15-2-28 | 公-公 | |
1.5~1.9 | 3-2-14-18 | 铁-铁-水 | 0.1~0.5 | 15-14-28 | 水-铁 | ||
5 | 0~0.05 | 5-17-28-27 | 公-公-公 | 0.7~1.9 | 15-12-29-28 | 铁-铁-铁 | |
0.1 | 5-11-14-27 | 公-公-公 | |||||
0.3 | 5-6-14-27 | 公-公-水 | |||||
0.5 | 5-23-27 | 铁-铁 | |||||
0.7 | 5-28-27 | 水-铁 | |||||
0.9 | 5-8-27 | 水-铁 | |||||
1.1~1.3 | 5-4-27 | 水-铁 | |||||
1.5~1.9 | 5-6-27 | 铁-水 |
Tab. 10 Routing results for each transport order under changes in carbon tax value
订单号 | 碳税值 | 路径 | 运输方式 | 订单号 | 碳税值 | 路径 | 运输方式 |
---|---|---|---|---|---|---|---|
1 | 0~0.05 | 1-20-21 | 公-公 | 6 | 0~0.05 | 8-10-2-11-18-30 | 公-公-公-公-公 |
0.1 | 1-20-21 | 公-公 | 0.1 | 8-12-30 | 公-水 | ||
0.3 | 1-15-25-21 | 公-公-水 | 0.3 | 8-22-30 | 水-水 | ||
0.5~0.7 | 1-7-21 | 水-铁 | 0.5~0.7 | 8-13-30 | 水-水 | ||
0.9~1.1 | 1-5-21 | 水-铁 | 0.9~1.7 | 8-27-30 | 水-水 | ||
1.3~1.9 | 1-10-21 | 水-水 | 1.9 | 8-9-30 | 水-水 | ||
2 | 0~0.05 | 1-21-26-30 | 公-公-公-公 | 7 | 0~0.05 | 9-12-19 | 公-公 |
0.1 | 1-24-30 | 水-公 | 0.1 | 9-11-26-19 | 公-公-公 | ||
0.3~0.5 | 1-29-30 | 水-水 | 0.3~0.5 | 9-27-19 | 水-公 | ||
0.9~1.9 | 1-23-30 | 水-水 | 0.7 | 9-18-19 | 公-水 | ||
3 | 0~0.05 | 2-20 | 公 | 0.9~1.1 | 9-24-19 | 水-铁 | |
0.1 | 2-28-20 | 公-公 | 1.3~1.9 | 9-13-19 | 铁-铁 | ||
0.3 | 2-12-20 | 公-水 | 8 | 0~0.05 | 12-18-22 | 公-公 | |
0.5 | 2-24-20 | 公-水 | 0.1 | 12-8-2-22 | 公-公-公 | ||
0.7 | 2-18-20 | 公-水 | 0.3~0.5 | 12-23-22 | 铁-铁 | ||
0.9 | 2-5-20 | 公-水 | 0.7~0.9 | 12-24-22 | 铁-铁 | ||
1.1~1.9 | 2-26-20 | 水-铁 | 1.1~1.9 | 12-5-13-22 | 公-铁-水 | ||
4 | 0~0.05 | 3-19-18 | 公-公 | 9 | 0~0.05 | 14-19-16 | 公-公 |
0.1 | 3-30-18 | 公-公 | 0.1 | 14-11-16 | 公-公 | ||
0.3~0.5 | 3-9-18 | 水-公 | 0.3 | 14-18-3-16 | 公-公-公 | ||
0.7 | 3-26-9-18 | 公-公-水 | 0.5~0.9 | 14-10-16 | 铁-公 | ||
0.9 | 3-16-18 | 公-铁 | 1.1~1.3 | 14-22-28-16 | 铁-铁-铁 | ||
1.1 | 3-5-18 | 铁-铁 | 1.5~1.9 | 14-9-16 | 铁-公 | ||
1.3 | 3-8-18 | 铁-铁 | 10 | 0~0.05 | 15-2-28 | 公-公 | |
1.5~1.9 | 3-2-14-18 | 铁-铁-水 | 0.1~0.5 | 15-14-28 | 水-铁 | ||
5 | 0~0.05 | 5-17-28-27 | 公-公-公 | 0.7~1.9 | 15-12-29-28 | 铁-铁-铁 | |
0.1 | 5-11-14-27 | 公-公-公 | |||||
0.3 | 5-6-14-27 | 公-公-水 | |||||
0.5 | 5-23-27 | 铁-铁 | |||||
0.7 | 5-28-27 | 水-铁 | |||||
0.9 | 5-8-27 | 水-铁 | |||||
1.1~1.3 | 5-4-27 | 水-铁 | |||||
1.5~1.9 | 5-6-27 | 铁-水 |
1 | PIECYK M I, McKINNON A C. Forecasting the carbon footprint of road freight transport in 2020[J]. International Journal of Production Economics, 2010, 128(1): 31-42. 10.1016/j.ijpe.2009.08.027 |
2 | FIGLIOZZI M, SAENZ J, FAULIN J. Minimization of urban freight distribution lifecycle CO2e emissions: results from an optimization model and a real-world case study[J]. Transport Policy, 2020, 86:60-68. 10.1016/j.tranpol.2018.06.010 |
3 | CARIS A, MACHARIS C, JANSSENS G K. Decision support in intermodal transport: a new research agenda[J]. Computers in Industry, 2013, 64(2):105-112. 10.1016/j.compind.2012.12.001 |
4 | 张旭,袁旭梅,降亚迪. 需求与碳交易价格不确定下多式联运路径优化[J]. 系统工程理论与实践, 2021, 41(10):2609-2620. 10.12011/SETP2020-0231 |
ZHANG X, YUAN X M, JIANG Y D. Optimization of multimodal transportation under uncertain demand and stochastic carbon trading price[J]. Systems Engineering - Theory and Practice, 2021, 41(10):2609-2620. 10.12011/SETP2020-0231 | |
5 | FAHIMNIA B, SARKIS J, CHOUDHARY A, et al. Tactical supply chain planning under a carbon tax policy scheme: a case study[J]. International Journal of Production Economics, 2015, 164:206-215. 10.1016/j.ijpe.2014.12.015 |
6 | 蒋琦玮,林艺,冯芬玲. 模糊时间下考虑碳税值变化的多式联运路径优化问题研究[J]. 工业技术经济, 2020, 39(4):81-88. 10.3969/j.issn.1004-910X.2020.04.010 |
JIANG Q W, LIN Y, FENG F L. Research on multimodal transport path optimization problem considering carbon tax value changes under fuzzy time[J]. Journal of Industrial Technological Economics, 2020, 39(4):81-88. 10.3969/j.issn.1004-910X.2020.04.010 | |
7 | LIAO C H, TSENG P H, LU C S. Comparing carbon dioxide emissions of trucking and intermodal container transport in Taiwan[J]. Transportation Research Part D: Transport and Environment, 2009, 14(7):493-496. 10.1016/j.trd.2009.05.002 |
8 | PIZZOL M. Deterministic and stochastic carbon footprint of intermodal ferry and truck freight transport across scandinavian routes[J]. Journal of Cleaner Production, 2019, 224:626-636. 10.1016/j.jclepro.2019.03.270 |
9 | 蒋玲茜,张培林,陈沿伊. 基于碳排放考量的集装箱海陆多式联运模式选择[J]. 水运管理, 2018, 40(1):7-10, 13. 10.3969/j.issn.1000-8799.2018.01.003 |
JIANG L Q, ZHANG P L, CHEN Y Y. Selection of container sea-land multimodal transportation mode based on carbon emission considerations[J]. Shipping Management, 2018, 40(1):7-10, 13. 10.3969/j.issn.1000-8799.2018.01.003 | |
10 | CHENG R W, GEN M, TOZAWA T. Vehicle routing problem with fuzzy due-time using genetic algorithms[J]. Journal of Japan Society for Fuzzy Theory and Systems, 2017, 7(5):1050-1061. |
11 | 李晶,邵倩. 考虑多模糊时间窗医药物流配送路径优化[J]. 物流技术, 2020, 39(3):89-93. 10.3969/j.issn.1005-152X.2020.03.018 |
LI J, SHAO Q. Optimization of pharmaceutical logistics distribution route considering multiple fuzzy time windows[J]. Logistics Technology, 2020, 39(3):89-93. 10.3969/j.issn.1005-152X.2020.03.018 | |
12 | GONCALVES G, HSU T, XU J. Vehicle routing problem with time windows and fuzzy demands: an approach based on the possibility theory[J]. International Journal of Advanced Operations Management, 2009, 1(4):312-330. 10.1504/ijaom.2009.031247 |
13 | 彭勇,肖云鹏,罗义娟. 不确定环境下多式联运路径多目标优化[J]. 重庆交通大学学报(自然科学版), 2021, 40(10):154-160, 170. 10.3969/j.issn.1674-0696.2021.10.18 |
PENG Y, XIAO Y P, LUO Y J. Multi-objective optimization for multi-modal transportation routing in uncertain environment[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(10): 154-160, 170. 10.3969/j.issn.1674-0696.2021.10.18 | |
14 | 耿娜娜,何燕,高海瑛,等. 不确定条件下的物流运输路径优化研究——以中欧班列多式联运为例[J]. 物流工程与管理, 2021, 43(10): 112-115. |
GENG N N, HE Y, GAO H Y, et al. Research on optimization of logistics transportation route under uncertainty — taking China-Europe express multimodal transport as an example[J]. Logistics Engineering and Management, 2021, 43(10): 112-115. | |
15 | SHI Y, BOUDOUH T, GRUNDER O. A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand[J]. Expert Systems with Applications, 2017, 72: 160-176. 10.1016/j.eswa.2016.12.013 |
16 | 谢静,林国龙,何红弟,等. 模糊需求环境下考虑碳成本的多式联运路径优化[J]. 宁夏大学学报(自然科学版), 2017, 38(2):173-179. 10.3969/j.issn.0253-2328.2017.02.011 |
XIE J, LIN G L, HE H D, et al. Optimization of multimodal transportation in fuzzy demand condition with consideration of carbon cost[J]. Journal of Ningxia University (Natural Science Edition), 2017, 38(2):173-179. 10.3969/j.issn.0253-2328.2017.02.011 | |
17 | SUN Y, LIANG X, LI X Y, et al. A fuzzy programming method for modeling demand uncertainty in the capacitated road-rail multimodal routing problem with time windows[J]. Symmetry, 2019, 11(1): No.91. 10.3390/sym11010091 |
18 | 张晓楠,范厚明. 带时间窗偏好的多行程模糊需求车辆路径优化[J]. 计算机集成制造系统, 2018, 24(10):2461-2477. 10.13196/j.cims.2018.10.009 |
ZHANG X N, FAN H M. Optimization for multi-trip vehicle routing problem with fuzzy demands considering time window preference[J]. Computer Integrated Manufacturing Systems, 2018, 24(10):2461-2477. 10.13196/j.cims.2018.10.009 | |
19 | 刘艳芳. 考虑模糊需求的多式联运路径优化研究[D]. 北京:北京交通大学, 2016:21-23. 10.7666/d.Y3126098 |
LIU Y F. Study on the multimodal routing optimization with fuzzy customer demands[D]. Beijing: Beijing Jiaotong University, 2016: 21-23. 10.7666/d.Y3126098 | |
20 | YAN S, ZHANG G J, HONG Z J, et al. How uncertain information on service capacity influences the intermodal routing decision: a fuzzy programming perspective[J]. Information, 2018, 9(1): No.24. 10.3390/info9010024 |
21 | FAZEL-ZARANDI M H, HEMMATI A, DAVARI S. The multi-depot capacitated location-routing problem with fuzzy travel times[J]. Expert Systems with Applications, 2011, 38(8): 10075-10084. 10.1016/j.eswa.2011.02.006 |
22 | 荆巍巍,章磊,田俊. 基于自适应NSGA-Ⅱ算法的柔性车间多目标生产调度[J]. 组合机床与自动化加工技术, 2020(8):151-155, 160. 10.13462/j.cnki.mmtamt.2020.08.037 |
JING W W, ZHANG L, TIAN J. Multi-objective flexible job-shop scheduling problem researching based on adaptive NSGA-Ⅱ[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2020(8):151-155, 160. 10.13462/j.cnki.mmtamt.2020.08.037 | |
23 | 辜勇,李雨,陈句,等. 多式联运碳减排研究综述[J]. 物流技术, 2021, 40(9):1-5. 10.3969/j.issn.1005-152X.2021.09.001 |
GU Y, LI Y, CHEN J, et al. Summary of researches on carbon emissions reduction in multimodal transport[J]. Logistics Technology, 2021, 40(9):1-5. 10.3969/j.issn.1005-152X.2021.09.001 |
[1] | SUN Junyan, CHEN Zhirui, NIU Yaru, ZHANG Yuanyuan, HAN Fang. Joint optimization of picking operation based on nested genetic algorithm [J]. Journal of Computer Applications, 2020, 40(12): 3687-3694. |
[2] | QIU Jigang, LI Wenlong, YANG Jia. Path optimization algorithm for team navigation based on multiple point collaboration [J]. Journal of Computer Applications, 2015, 35(7): 2093-2095. |
[3] | LI Xun CHEN Ming. Idle travel optimization of tool path on intensive multi-profile patterns [J]. Journal of Computer Applications, 2014, 34(1): 281-285. |
[4] | LAIZhizhu. Harmony search algorithm for solving selection of multimodal transportation scheme with several time windows [J]. Journal of Computer Applications, 2013, 33(09): 2640-2642. |
[5] | HUANG Yangyu HU Wei YUAN Guodong. Global path planning based reciprocal velocity obstacles method for crowd evacuation [J]. Journal of Computer Applications, 2013, 33(06): 1753-1758. |
[6] | GAO Man LIU Yi-an ZHANG Qiang. Application of improved ant colony algorithm to route planning of anti-ship missile [J]. Journal of Computer Applications, 2012, 32(09): 2530-2533. |
[7] | Xiao-chong LIU Min DAI Gang ZHENG Qing-jun HUANG. Vehicle Route Planning Study for Cash Transport Van [J]. Journal of Computer Applications, 2011, 31(04): 1121-1124. |
[8] | Yong-hong LUO Te-Fang CHEN You-Sheng ZHANG. Study on architecture of seamless transportation information grid [J]. Journal of Computer Applications, 2008, 28(11): 2749-2752. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||