1 |
刘小宇,陈怀新,刘壁源,等.自适应置信度阈值的非限制场景车牌检测算法[J].计算机应用, 2023, 43(1): 67-73.
|
|
LIU X Y, CHEN H X, LIU B Y, et al. License plate detection algorithm in unrestricted scenes based on adaptive confidence threshold [J]. Journal of Computer Applications, 2023, 43(1): 67-73.
|
2 |
张芳,赵东旭,肖志涛,等.单幅图像超分辨率重建技术研究进展[J].自动化学报, 2022, 48(11): 2634-2654.
|
|
ZHANG F, ZHAO D X, XIAO Z T, et al. Research progress of single image super-resolution reconstruction technology [J]. Acta Automatica Sinica, 2022, 48(11): 2634-2654.
|
3 |
缪永伟,张新杰,任瀚实,等.基于通道多尺度融合的场景深度图超分辨率网络[J].计算机辅助设计与图形学学报, 2023, 35(1): 37-47.
|
|
LIAO Y W, ZHANG X J, REN H S, et al. A channel multi-scale fusion network for scene depth map super-resolution [J]. Journal of Computer-Aided Design and Computer Graphics, 2023, 35(1): 37-47.
|
4 |
LIANG J, CAO J, SUN G, et al. SwinIR: image restoration using Swin Transformer [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 1833-1844.
|
5 |
KONG F, LI M, LIU S, et al. Residual local feature network for efficient super-resolution [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 765-775.
|
6 |
LU Z, LI J, LIU H, et al. Transformer for single image super-resolution [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 456-465.
|
7 |
CHOI H, LEE J, YANG J. N-Gram in Swin Transformers for efficient lightweight image super-resolution [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 2071-2081.
|
8 |
吴炜,杨晓敏,余艳梅,等.核偏最小二乘算法的图像超分辨率算法[J].电子科技大学学报, 2011, 40(1): 105-110.
|
|
WU W, YANG X M, XU Y M, et al. Image super-resolution using KPLS [J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 105-110.
|
9 |
徐胜军,邓博文,史亚,等.一种编解码结构的车牌图像超分辨率网络[J].西安交通大学学报, 2022, 56(10): 101-110.
|
|
XU S J, DENG B W, SHI Y, et al. An encoder-decoder-based super resolution network for license plate images [J]. Journal of Xi’an Jiaotong University, 2022, 56(10): 101-110.
|
10 |
LIN M, LIU L, WANG F, et al. License plate image reconstruction based on generative adversarial networks [J]. Remote Sensing, 2021, 13(15): No.3018.
|
11 |
EL-SHAL I H, FAHMY O M, ELATTAR M A. License plate image analysis empowered by Generative Adversarial neural Networks (GANs) [J]. IEEE Access, 2022, 10: 30846-30857.
|
12 |
SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883.
|
13 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
14 |
MIN K, LEE G H, LEE S W. Attentional feature pyramid network for small object detection [J]. Neural Networks, 2022, 155: 439-450.
|
15 |
ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5718-5729.
|
16 |
WANG H, CHEN X, NI B, et al. Omni aggregation networks for lightweight image super-resolution [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 22378-22387.
|
17 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
|
18 |
DING X, ZHANG X, ZHOU J, et al. Scaling up your kernels to 31×31: revisiting large kernel design in CNNs [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11953-11965.
|
19 |
LIU J J, HOU Q, CHENG M M, et al. Improving convolutional networks with self-calibrated convolutions [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10093-10102.
|
20 |
李键红,吴亚榕,詹瑾.挖掘理想重建图像自相似性的超分辨率[J].湖南大学学报(自然科学版), 2021, 48(8): 149-160.
|
|
LI J H, WU Y R, ZHAN J. Image super-resolution by exploiting self-similarity of ideal reconstruction [J]. Journal of Hunan University (Natural Sciences), 2021, 48(8): 149-160.
|
21 |
李颖,黄超,孙成栋,等.真实复杂场景下基于残差收缩网络的单幅图像超分辨率方法[J].计算机应用, 2023, 43(12): 3903-3910.
|
|
LI Y, HUANG C, SUN C D, et al. Single image super-resolution method based on residual shrinkage network in real complex scenes [J]. Journal of Computer Applications, 2023, 43(12): 3903-3910.
|
22 |
AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11214. Cham: Springer, 2018: 256-272.
|
23 |
HUI Z, GAO X B, YANG Y C, et al. Lightweight image super-resolution with information multi-distillation network [C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2018: 2024-2032.
|
24 |
MUQEET A, HWANG J, YANG S, et al. Multi-attention based ultra lightweight image super-resolution [C]// Proceedings of the 2020 European Conference on Computer Vision Workshops, LNCS 12537. Cham: Springer, 2020: 103-118.
|