Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (10): 3390-3398.DOI: 10.11772/j.issn.1001-9081.2024101555
• Frontier and comprehensive applications • Previous Articles
Na LIU1,2, Jun FENG1,2(), Yiru HUO1,2, Hongyang WANG1,2, Liu YANG1,2
Received:
2024-11-04
Revised:
2025-02-21
Accepted:
2025-02-24
Online:
2025-02-27
Published:
2025-10-10
Contact:
Jun FENG
About author:
LIU Na, born in 2000, M. S. candidate. Her research interests include computer vision, image segmentation.Supported by:
刘娜1,2, 封筠1,2(), 霍一儒1,2, 王弘扬1,2, 杨柳1,2
通讯作者:
封筠
作者简介:
刘娜(2000—),女,河北张家口人,硕士研究生,CCF会员,主要研究方向:计算机视觉、图像分割基金资助:
CLC Number:
Na LIU, Jun FENG, Yiru HUO, Hongyang WANG, Liu YANG. SAMCP: lightweight fine-tuned SAM method for colon polyp segmentation[J]. Journal of Computer Applications, 2025, 45(10): 3390-3398.
刘娜, 封筠, 霍一儒, 王弘扬, 杨柳. 轻量级微调SAM的结肠息肉分割方法SAMCP[J]. 《计算机应用》唯一官方网站, 2025, 45(10): 3390-3398.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024101555
类别 | 方法 | 训练参数量/106 | Kvasir-SEG | CVC-ClinicDB | CVC-ColonDB | |||
---|---|---|---|---|---|---|---|---|
Dice↑ | IoU↑ | Dice↑ | IoU↑ | Dice↑ | IoU↑ | |||
No-SAM | U-net | 31.0 | 0.818 | 0.746 | 0.823 | 0.755 | 0.512 | 0.444 |
PraNet | 26.3 | 0.898 | 0.840 | 0.899 | 0.849 | 0.712 | 0.640 | |
TransNet | 105.0 | 0.857 | 0.893 | 0.660 | 0.781 | |||
SANet | — | 0.904 | 0.847 | 0.753 | 0.670 | |||
CaraNet | — | 0.921 | 0.876 | 0.700 | ||||
SSFormer | — | 0.926 | 0.874 | 0.906 | 0.855 | 0.772 | 0.697 | |
SAM-based | SAM | — | 0.589 | 0.471 | 0.626 | 0.456 | 0.447 | 0.356 |
SAM-Med2D-3P | 184.5 | 0.821 | 0.735 | 0.882 | 0.816 | 0.689 | 0.588 | |
SAM-Med2D-5P | 184.5 | 0.822 | 0.735 | 0.881 | 0.814 | 0.686 | 0.575 | |
SAM-Med2D-9P | 184.5 | 0.832 | 0.748 | 0.887 | 0.749 | 0.645 | ||
IPS-3P | 1.3 | 0.841 | 0.752 | — | — | 0.802 | 0.697 | |
IPS-5P | 1.3 | 0.855 | 0.772 | — | — | 0.819 | 0.716 | |
IPS-16P | 1.3 | 0.851 | — | — | 0.874 | 0.789 | ||
SAMCP-1P | 4.0 | 0.923 | 0.869 | 0.848 | 0.872 | 0.791 | ||
SAMCP-3P | 4.0 | 0.923 | 0.848 | |||||
SAMCP-5P | 4.0 | 0.923 | 0.914 | 0.848 | 0.872 | 0.788 | ||
SAMCP-9P | 4.0 | 0.923 | 0.914 | 0.848 | 0.872 | 0.789 |
Tab. 1 Comparison results of SAMCP and other methods on three public datasets
类别 | 方法 | 训练参数量/106 | Kvasir-SEG | CVC-ClinicDB | CVC-ColonDB | |||
---|---|---|---|---|---|---|---|---|
Dice↑ | IoU↑ | Dice↑ | IoU↑ | Dice↑ | IoU↑ | |||
No-SAM | U-net | 31.0 | 0.818 | 0.746 | 0.823 | 0.755 | 0.512 | 0.444 |
PraNet | 26.3 | 0.898 | 0.840 | 0.899 | 0.849 | 0.712 | 0.640 | |
TransNet | 105.0 | 0.857 | 0.893 | 0.660 | 0.781 | |||
SANet | — | 0.904 | 0.847 | 0.753 | 0.670 | |||
CaraNet | — | 0.921 | 0.876 | 0.700 | ||||
SSFormer | — | 0.926 | 0.874 | 0.906 | 0.855 | 0.772 | 0.697 | |
SAM-based | SAM | — | 0.589 | 0.471 | 0.626 | 0.456 | 0.447 | 0.356 |
SAM-Med2D-3P | 184.5 | 0.821 | 0.735 | 0.882 | 0.816 | 0.689 | 0.588 | |
SAM-Med2D-5P | 184.5 | 0.822 | 0.735 | 0.881 | 0.814 | 0.686 | 0.575 | |
SAM-Med2D-9P | 184.5 | 0.832 | 0.748 | 0.887 | 0.749 | 0.645 | ||
IPS-3P | 1.3 | 0.841 | 0.752 | — | — | 0.802 | 0.697 | |
IPS-5P | 1.3 | 0.855 | 0.772 | — | — | 0.819 | 0.716 | |
IPS-16P | 1.3 | 0.851 | — | — | 0.874 | 0.789 | ||
SAMCP-1P | 4.0 | 0.923 | 0.869 | 0.848 | 0.872 | 0.791 | ||
SAMCP-3P | 4.0 | 0.923 | 0.848 | |||||
SAMCP-5P | 4.0 | 0.923 | 0.914 | 0.848 | 0.872 | 0.788 | ||
SAMCP-9P | 4.0 | 0.923 | 0.914 | 0.848 | 0.872 | 0.789 |
Focal Loss | Kvasir-SEG | CVC-ClinicDB | CVC-ColonDB | |||
---|---|---|---|---|---|---|
Dice↑ | IoU↑ | Dice↑ | IoU↑ | Dice↑ | IoU↑ | |
√ | 0.871 | 0.809 | 0.882 | 0.816 | 0.791 | 0.707 |
× | 0.905 | 0.847 | 0.908 | 0.846 | 0.854 | 0.768 |
Tab. 2 Comparison of results using Focal Loss or not on three public datasets
Focal Loss | Kvasir-SEG | CVC-ClinicDB | CVC-ColonDB | |||
---|---|---|---|---|---|---|
Dice↑ | IoU↑ | Dice↑ | IoU↑ | Dice↑ | IoU↑ | |
√ | 0.871 | 0.809 | 0.882 | 0.816 | 0.791 | 0.707 |
× | 0.905 | 0.847 | 0.908 | 0.846 | 0.854 | 0.768 |
Adapter | Kvasir-SEG | CVC-ClinicDB | CVC-ColonDB | |||
---|---|---|---|---|---|---|
Dice↑ | IoU↑ | Dice↑ | IoU↑ | Dice↑ | IoU↑ | |
a | 0.905 | 0.819 | 0.908 | 0.846 | 0.854 | 0.768 |
b | 0.913 | 0.859 | 0.909 | 0.843 | 0.831 | 0.744 |
c | 0.923 | 0.868 | 0.911 | 0.848 | 0.873 | 0.789 |
d | 0.919 | 0.863 | 0.905 | 0.840 | 0.857 | 0.774 |
Tab. 3 Performance comparison of different adapters on three public datasets
Adapter | Kvasir-SEG | CVC-ClinicDB | CVC-ColonDB | |||
---|---|---|---|---|---|---|
Dice↑ | IoU↑ | Dice↑ | IoU↑ | Dice↑ | IoU↑ | |
a | 0.905 | 0.819 | 0.908 | 0.846 | 0.854 | 0.768 |
b | 0.913 | 0.859 | 0.909 | 0.843 | 0.831 | 0.744 |
c | 0.923 | 0.868 | 0.911 | 0.848 | 0.873 | 0.789 |
d | 0.919 | 0.863 | 0.905 | 0.840 | 0.857 | 0.774 |
Focal Loss | Adapter | Kvasir-SEG | CVC-ClinicDB | CVC-ColonDB | |||
---|---|---|---|---|---|---|---|
Dice↑ | IoU↑ | Dice↑ | IoU↑ | Dice↑ | IoU↑ | ||
√ | × | 0.871 | 0.809 | 0.882 | 0.816 | 0.807 | 0.726 |
× | × | 0.905 | 0.819 | 0.908 | 0.846 | 0.854 | 0.768 |
√ | √ | 0.915 | 0.859 | 0.902 | 0.840 | 0.863 | 0.777 |
× | √ | 0.923 | 0.868 | 0.911 | 0.848 | 0.872 | 0.791 |
Tab. 4 Ablation experimental results of adapter and Focal Loss on three datasets
Focal Loss | Adapter | Kvasir-SEG | CVC-ClinicDB | CVC-ColonDB | |||
---|---|---|---|---|---|---|---|
Dice↑ | IoU↑ | Dice↑ | IoU↑ | Dice↑ | IoU↑ | ||
√ | × | 0.871 | 0.809 | 0.882 | 0.816 | 0.807 | 0.726 |
× | × | 0.905 | 0.819 | 0.908 | 0.846 | 0.854 | 0.768 |
√ | √ | 0.915 | 0.859 | 0.902 | 0.840 | 0.863 | 0.777 |
× | √ | 0.923 | 0.868 | 0.911 | 0.848 | 0.872 | 0.791 |
[1] | KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 3992-4003. |
[2] | 王淼,黄智忠,何晖光,等. 分割一切模型SAM的潜力与展望:综述[J]. 中国图象图形学报, 2024, 29(6): 1479-1509. |
WANG M, HUANG Z Z, HE H G, et al. Potential and prospects of segment anything model: a survey[J]. Journal of Image and Graphics, 2024, 29(6): 1479-1509. | |
[3] | CHENG J, YE J, DENG Z, et al. SAM-Med 2D[EB/OL]. [2024-06-11].. |
[4] | JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: a segmented polyp dataset[C]// Proceedings of the 2020 International Conference on MultiMedia Modeling, LNCS 11962. Cham: Springer, 2020: 451-462. |
[5] | BERNAL J, SÁNCHEZ F J, FERNÁNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 2015, 43: 99-111. |
[6] | TAJBKAKHSH N, GURUDU S R, LIANG J. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 2016, 35(2): 630-644. |
[7] | RONNEBERGER O, FISHCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
[8] | FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse attention network for polyp segmentation[C]// Proceedings of the 2020 International Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 12266. Cham: Springer, 2020: 263-273. |
[9] | CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. [2024-06-11].. |
[10] | SHI W, XU J, GAO P. SSformer: a lightweight Transformer for semantic segmentation[C]// Proceedings of the IEEE 24th International Workshop on Multimedia Signal Processing. Piscataway: IEEE, 2022: 1-5. |
[11] | WEI J, HU Y, ZHANG R, et al. Shallow attention network for polyp segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 699-708. |
[12] | LIU Y, HAN T, MA S, et al. Summary of ChatGPT/GPT-4 research and perspective towards the future of large language models[J]. Meta-Radiology, 2023, 1(2): No.100017. |
[13] | CARON M, TOUVRON H, MISRA I, et al. Emerging properties in self-supervised vision Transformers[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9630-9640. |
[14] | WANG X, ZHANG X, CAO Y, et al. SegGPT: towards segmenting everything in context[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 1130-1140. |
[15] | MA J, HE Y, LI F. Segment anything in medical images[J]. Nature Communications, 2023, 15: No.654. |
[16] | WU J, WANG Z, HONG M, et al. Medical SAM adapter: adapting segment anything model for medical image segmentation[J]. Medical Image Analysis, 2025, 105: No.103547. |
[17] | HU M, LI Y, YANG X. SkinSAM: empowering skin cancer segmentation with segment anything model[EB/OL]. [2024-06-11].. |
[18] | LIN X, XIANG Y, ZHANG L, et al. Beyond adapting SAM: towards end-to-end ultrasound image segmentation via auto prompting[C]// Proceedings of the 2024 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2024: 24-34. |
[19] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2024-06-11].. |
[20] | 陈洛轩,林成创,郑招良,等. Transformer在计算机视觉场景下的研究综述[J]. 计算机科学, 2023, 50(12): 130-147. |
CHEN L X, LIN C C, ZHENG Z L, et al. Review of Transformer in computer vision[J]. Computer Science, 2023, 50(12): 130-147. | |
[21] | GHALATI M K, NUNES A, FERREIRA H, et al. Texture analysis and its applications in biomedical imaging: a survey[J]. IEEE Reviews in Biomedical Engineering, 2022, 15: 222-246. |
[22] | ALI H, SHARIF M, YASMIN M, et al. Color-based template selection for detection of gastric abnormalities in video endoscopy[J]. Biomedical Signal Processing and Control, 2020, 56: No.101668. |
[23] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL 2019: 4171-4186. |
[24] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. |
[25] | MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]// Proceedings of the 4th International Conference on 3D Vision. Piscataway: IEEE, 2016: 565-571. |
[26] | RAHMAN M A, WANG Y. Optimizing intersection-over-union in deep neural networks for image segmentation[C]// Proceedings of the 2016 International Symposium on Visual Computing, LNCS 10072. Cham: Springer, 2016: 234-244. |
[27] | LOU A, GUAN S, KO H, et al. CaraNet: context axial reverse attention network for segmentation of small medical objects[C]// Proceedings of the SPIE 12032, Medical Imaging 2022: Image Processing. Bellingham, WA: SPIE, 2022: No.120320D. |
[28] | WANG J F, SONG S, WANG X K, et al. ProMISe: promptable medical image segmentation using SAM[EB/OL]. [2024-12-29].. |
[1] | Yiming LIANG, Jing FAN, Wenze CHAI. Multi-scale feature fusion sentiment classification based on bidirectional cross attention [J]. Journal of Computer Applications, 2025, 45(9): 2773-2782. |
[2] | Chengzhi YAN, Ying CHEN, Kai ZHONG, Han GAO. 3D object detection algorithm based on multi-scale network and axial attention [J]. Journal of Computer Applications, 2025, 45(8): 2537-2545. |
[3] | Dehui ZHOU, Jun ZHAO, Jinfeng CHENG. Tiny defect detection algorithm for bearing surface based on RT-DETR [J]. Journal of Computer Applications, 2025, 45(6): 1987-1997. |
[4] | Jie HU, Cui WU, Jun SUN, Yan ZHANG. Document-level relation extraction model based on anaphora and logical reasoning [J]. Journal of Computer Applications, 2025, 45(5): 1496-1503. |
[5] | Quan WANG, Xinyu CAO, Qidong CHEN. Roadside traffic object detection model and deployment for vehicle-road collaboration [J]. Journal of Computer Applications, 2025, 45(3): 1016-1024. |
[6] | Jiayang GUI, Shunji WANG, Zhengkang ZHOU, Jiashan TANG. Tunnel foreign object detection algorithm based on improved YOLOv8n [J]. Journal of Computer Applications, 2025, 45(2): 655-661. |
[7] | Guoyu XU, Xiaolong YAN, Yidan ZHANG. DU-FastGAN: lightweight generative adversarial network based on dynamic-upsample [J]. Journal of Computer Applications, 2025, 45(10): 3067-3073. |
[8] | Zhenyuan LIANG, Songlin JIANG, Songhao ZHU. Self-supervised image denoising based on blind-ring network and random recovery mask [J]. Journal of Computer Applications, 2025, 45(10): 3311-3319. |
[9] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[10] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[11] | Zhe KONG, Han LI, Shaowei GAN, Mingru KONG, Bingtao HE, Ziyu GUO, Ducheng JIN, Zhaowen QIU. Structure segmentation model for 3D kidney images based on asymmetric multi-decoder and attention module [J]. Journal of Computer Applications, 2024, 44(7): 2216-2224. |
[12] | Xiaohui CHENG, Yuntian HUANG, Ruifang ZHANG. Lightweight infrared road scene detection model based on multiscale and weighted coordinate attention [J]. Journal of Computer Applications, 2024, 44(6): 1927-1934. |
[13] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[14] | Wei LI, Ling CHEN, Xiuyuan XU, Min ZHU, Jixiang GUO, Kai ZHOU, Hao NIU, Yuchen ZHANG, Shanye YI, Yi ZHANG, Fengming LUO. Interstitial lung disease segmentation algorithm based on multi-task learning [J]. Journal of Computer Applications, 2024, 44(4): 1285-1293. |
[15] | Xinran LUO, Tianrui LI, Zhen JIA. Chinese medical named entity recognition based on self-attention mechanism and lexicon enhancement [J]. Journal of Computer Applications, 2024, 44(2): 385-392. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||