Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3601-3608.DOI: 10.11772/j.issn.1001-9081.2024111590

• Data science and technology • Previous Articles    

Interactive visualization method for multi-category urban spatiotemporal big data based on point aggregation

Shijiao LI1,2,3, Boyang HAN1,2,3(), Chuishi MENG2,3, Xiaolong ZHANG1,2,3, Tianrui LI1, Yu ZHENG1,2,3   

  1. 1.School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu Sichuan 611756,China
    2.JD Intelligent Cities Research,Beijing 100176,China
    3.Jingdong Digits Technology Holding Company Limited,Beijing 100176,China
  • Received:2024-11-11 Revised:2025-01-09 Accepted:2025-01-24 Online:2025-02-14 Published:2025-11-10
  • Contact: Boyang HAN
  • About author:LI Shijiao, born in 2000, M. S. candidate. His research interests include urban computing, spatiotemporal data mining.
    MENG Chuishi, born in 1987, Ph. D. His research interests include spatiotemporal machine learning, urban computing, data mining.
    ZHANG Xiaolong, born in 1998, Ph. D. candidate. His research interests include urban computing, spatiotemporal data representation.
    LI Tianrui, born in 1969, Ph. D., professor. His research interests include big data intelligence, urban computing, granular computing, rough set.
    ZHENG Yu, born in 1979, Ph. D., professor. His research interests include urban computing, spatiotemporal data mining, big data analysis.
  • Supported by:
    Beijing Nova Program(Z211100002121112)

基于点聚合的多类别城市时空大数据交互式可视化方法

黎世骄1,2,3, 韩博洋1,2,3(), 孟垂实2,3, 张晓龙1,2,3, 李天瑞1, 郑宇1,2,3   

  1. 1.西南交通大学 计算机与人工智能学院,成都 611756
    2.北京京东智能城市大数据研究院,北京 100176
    3.京东数字科技有限公司,北京 100176
  • 通讯作者: 韩博洋
  • 作者简介:黎世骄(2000—),男,四川成都人,硕士研究生,CCF会员,主要研究方向:城市计算、时空数据挖掘
    孟垂实(1987—),男,吉林四平人,博士,CCF会员,主要研究方向:时空机器学习、城市计算、数据挖掘
    张晓龙(1998—),男,山东潍坊人,博士研究生,CCF会员,主要研究方向:城市计算、时空数据表征
    李天瑞(1969—),男,福建莆田人,教授,博士,主要研究方向:大数据智能、城市计算、粒计算、粗糙集
    郑宇(1979—),男,湖南衡阳人,教授,博士,主要研究方向:城市计算、时空数据挖掘、大数据分析。
  • 基金资助:
    北京市科技新星计划项目(Z211100002121112)

Abstract:

To address the challenges of difficult visual management and inefficient localization in large-scale, multi-category urban spatiotemporal data, an interactive visualization method for multi-category urban spatiotemporal big data based on point aggregation was proposed. Firstly, two efficient aggregation methods were introduced: geographic location-based aggregation and geographic hierarchy-based aggregation, to meet the government personnel’s needs for efficient visual management across diverse scenarios. Secondly, on the basis of efficient point aggregation, a conditional parsing algorithm was proposed o enable real-time parsing and conversion of spatiotemporal conditions and category visibility, improving data localization efficiency. Finally, 270 000 pieces of urban entity data from Beijing were used to conduct geographically hierarchical parsing algorithms and aggregation interaction experiments. Experimental results demonstrate that the average processing time of the two proposed aggregation methods were reduced by approximately 69.66% and 63.15%, respectively, compared to K-means in different scenarios, confirming the efficiency and stability of data processing and aggregation services in the system during data storage. Besides, this aggregation application service has been successfully deployed in a city governance project, supporting million-scale urban data aggregation with proven applicability.

Key words: point aggregation, geographically hierarchical parsing, human-computer interaction, visual management system, spatiotemporal data

摘要:

针对大规模多类别城市时空数据可视化管理难、定位效率低的问题,提出基于点聚合的多类别城市时空大数据交互式可视化方法。首先,分别提出基于地理位置与基于地理层级的高效聚合方法,满足政务人员在不同场景下的高效可视化管理需求;其次,在高效点聚合功能基础上,提出条件解析算法实现对时空条件和类目显隐的实时解析转换,提高数据定位效率;最后,采用北京市27万条城市实体数据进行地理层级解析算法与聚合交互实验。实验结果表明,在不同场景下,所提出的2个聚合方法的平均耗时比K-means方法分别缩短了约69.66%和63.15%,充分说明了系统存储数据时数据处理与聚合服务的高效性与稳定性;而且该聚合应用服务目前已成功在某城市治理项目示范应用,支撑了百万级城市数据聚合服务,具有较高的可用性。

关键词: 点聚合, 地理层级解析, 人机交互, 可视化管理系统, 时空数据

CLC Number: