Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1104-1112.DOI: 10.11772/j.issn.1001-9081.2024030386
• Artificial intelligence • Previous Articles Next Articles
Jie HU1,2,3, Qiyang ZHENG1, Jun SUN1,2,3(), Yan ZHANG1,2,3
Received:
2024-04-08
Revised:
2024-07-04
Accepted:
2024-07-17
Online:
2024-10-12
Published:
2025-04-10
Contact:
Jun SUN
About author:
HU Jie, born in 1977, Ph. D., professor. Her research interests include complex semantic big data management, natural language processing.Supported by:
胡婕1,2,3, 郑启扬1, 孙军1,2,3(), 张龑1,2,3
通讯作者:
孙军
作者简介:
胡婕(1977—),女,湖北汉川人,教授,博士,主要研究方向:复杂语义大数据管理、自然语言处理基金资助:
CLC Number:
Jie HU, Qiyang ZHENG, Jun SUN, Yan ZHANG. Multi-label classification model based on multi-label relational graph and local dynamic reconstruction learning[J]. Journal of Computer Applications, 2025, 45(4): 1104-1112.
胡婕, 郑启扬, 孙军, 张龑. 基于多标签关系图和局部动态重构学习的多标签分类模型[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1104-1112.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030386
类型 | BibTeX | Delicious | Reuters-21578 |
---|---|---|---|
文本输入类型 | Binary Vector | Binary Vector | Sequential |
训练样本数 | 4 377 | 11 597 | 6 993 |
验证样本数 | 487 | 1 289 | 777 |
测试样本数 | 2 515 | 3 185 | 3 019 |
标签数 | 159 | 983 | 90 |
输入特征数 | 1 836 | 500 | 23 662 |
Tab. 1 Experimental dataset description
类型 | BibTeX | Delicious | Reuters-21578 |
---|---|---|---|
文本输入类型 | Binary Vector | Binary Vector | Sequential |
训练样本数 | 4 377 | 11 597 | 6 993 |
验证样本数 | 487 | 1 289 | 777 |
测试样本数 | 2 515 | 3 185 | 3 019 |
标签数 | 159 | 983 | 90 |
输入特征数 | 1 836 | 500 | 23 662 |
参数 | 值 | 参数 | 值 |
---|---|---|---|
Transformer hidden size | 512 | Learning rate | 0.000 2 |
GCN嵌入维度 | 512 | Weight decay | 0.01 |
GCN层数 | 2 | 优化器 | Adam |
Batch size | 32 | Dropout(Delicious) | 0.1 |
注意力头数 | 4 | Dropout(BibTeX和 Reuters-21578) | 0.2 |
编码器层数 | 2 | 0.005 | |
Epoch | 50 |
Tab. 2 Parameter setting
参数 | 值 | 参数 | 值 |
---|---|---|---|
Transformer hidden size | 512 | Learning rate | 0.000 2 |
GCN嵌入维度 | 512 | Weight decay | 0.01 |
GCN层数 | 2 | 优化器 | Adam |
Batch size | 32 | Dropout(Delicious) | 0.1 |
注意力头数 | 4 | Dropout(BibTeX和 Reuters-21578) | 0.2 |
编码器层数 | 2 | 0.005 | |
Epoch | 50 |
模型 | BibTeX | Delicious | Reuters-21578 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | ebF1 | maF1 | miF1 | ACC | ebF1 | maF1 | miF1 | ACC | ebF1 | maF1 | miF1 | |
差值 | +6.0 | +2.1 | +3.5 | +1.5 | +14.3 | +3.2 | +5.0 | +4.9 | +1.4 | +1.1 | +3.7 | +1.3 |
ML-KNN | 7.4 | 20.5 | 13.4 | 26.8 | 0.3 | 22.3 | 8.0 | 24.5 | 65.1 | 71.0 | 25.3 | 73.2 |
ML-ARAM | 10.7 | 25.8 | 9.7 | 23.8 | 0.5 | 15.5 | 4.1 | 16.7 | 47.4 | 67.3 | 16.3 | 62.8 |
LaMP | 18.5 | 44.7 | 37.6 | 47.3 | 0.6 | 37.2 | 19.6 | 38.6 | 83.5 | 90.6 | 56.0 | 88.9 |
MPVAE | 17.9 | 45.3 | 38.6 | 47.5 | 0.0 | 37.3 | 18.1 | 38.4 | 81.6 | 89.8 | 54.2 | 88.7 |
HOT-VAE | — | — | — | — | 84.0 | 91.2 | 57.4 | 89.1 | ||||
MrMP | 19.9 | 46.0 | 39.3 | 48.1 | ||||||||
CFTC | — | — | — | — | — | — | — | — | 83.3 | 90.0 | 55.7 | 88.8 |
本文模型 | 21.3 | 47.9 | 40.9 | 48.9 | 0.8 | 38.9 | 20.9 | 41.0 | 85.6 | 92.4 | 61.3 | 90.5 |
Tab. 3 Evaluation index comparison among different models on BibTeX, Delicious, and Reuters-21578 datasets
模型 | BibTeX | Delicious | Reuters-21578 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | ebF1 | maF1 | miF1 | ACC | ebF1 | maF1 | miF1 | ACC | ebF1 | maF1 | miF1 | |
差值 | +6.0 | +2.1 | +3.5 | +1.5 | +14.3 | +3.2 | +5.0 | +4.9 | +1.4 | +1.1 | +3.7 | +1.3 |
ML-KNN | 7.4 | 20.5 | 13.4 | 26.8 | 0.3 | 22.3 | 8.0 | 24.5 | 65.1 | 71.0 | 25.3 | 73.2 |
ML-ARAM | 10.7 | 25.8 | 9.7 | 23.8 | 0.5 | 15.5 | 4.1 | 16.7 | 47.4 | 67.3 | 16.3 | 62.8 |
LaMP | 18.5 | 44.7 | 37.6 | 47.3 | 0.6 | 37.2 | 19.6 | 38.6 | 83.5 | 90.6 | 56.0 | 88.9 |
MPVAE | 17.9 | 45.3 | 38.6 | 47.5 | 0.0 | 37.3 | 18.1 | 38.4 | 81.6 | 89.8 | 54.2 | 88.7 |
HOT-VAE | — | — | — | — | 84.0 | 91.2 | 57.4 | 89.1 | ||||
MrMP | 19.9 | 46.0 | 39.3 | 48.1 | ||||||||
CFTC | — | — | — | — | — | — | — | — | 83.3 | 90.0 | 55.7 | 88.8 |
本文模型 | 21.3 | 47.9 | 40.9 | 48.9 | 0.8 | 38.9 | 20.9 | 41.0 | 85.6 | 92.4 | 61.3 | 90.5 |
模型 | BibTeX | Delicious | Reuters-21578 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | ebF1 | maF1 | miF1 | ACC | ebF1 | maF1 | miF1 | ACC | ebF1 | maF1 | miF1 | |
本文模型 | 21.3 | 47.9 | 40.3 | 48.9 | 0.8 | 38.9 | 20.9 | 40.0 | 85.6 | 92.4 | 61.3 | 90.5 |
摘除局部动态重构图 | 19.8 | 45.8 | 39.0 | 47.8 | 0.7 | 37.5 | 19.7 | 39.0 | 84.0 | 91.0 | 58.8 | 89.0 |
摘除多标签关系图 | 20.1 | 46.3 | 39.4 | 48.2 | 0.7 | 38.0 | 20.2 | 39.3 | 84.6 | 91.6 | 59.5 | 89.5 |
摘除标签注意力机制 | 20.4 | 46.8 | 39.9 | 48.5 | 0.7 | 38.2 | 20.5 | 39.6 | 85.0 | 92.1 | 60.4 | 89.9 |
摘除三者 | 19.0 | 45.2 | 38.3 | 47.1 | 0.6 | 36.9 | 19.1 | 38.5 | 83.2 | 89.8 | 57.9 | 88.2 |
Tab. 4 Ablation experimental results
模型 | BibTeX | Delicious | Reuters-21578 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | ebF1 | maF1 | miF1 | ACC | ebF1 | maF1 | miF1 | ACC | ebF1 | maF1 | miF1 | |
本文模型 | 21.3 | 47.9 | 40.3 | 48.9 | 0.8 | 38.9 | 20.9 | 40.0 | 85.6 | 92.4 | 61.3 | 90.5 |
摘除局部动态重构图 | 19.8 | 45.8 | 39.0 | 47.8 | 0.7 | 37.5 | 19.7 | 39.0 | 84.0 | 91.0 | 58.8 | 89.0 |
摘除多标签关系图 | 20.1 | 46.3 | 39.4 | 48.2 | 0.7 | 38.0 | 20.2 | 39.3 | 84.6 | 91.6 | 59.5 | 89.5 |
摘除标签注意力机制 | 20.4 | 46.8 | 39.9 | 48.5 | 0.7 | 38.2 | 20.5 | 39.6 | 85.0 | 92.1 | 60.4 | 89.9 |
摘除三者 | 19.0 | 45.2 | 38.3 | 47.1 | 0.6 | 36.9 | 19.1 | 38.5 | 83.2 | 89.8 | 57.9 | 88.2 |
GCN层数 | ACC/% | ebF1/% | maF1/% | miF1/% |
---|---|---|---|---|
1 | 85.4 | 92.0 | 61.0 | 90.2 |
2 | 85.6 | 92.4 | 61.3 | 90.5 |
3 | 85.0 | 91.6 | 59.7 | 89.7 |
4 | 84.6 | 91.0 | 58.9 | 89.1 |
Tab. 5 Comparison of experimental results of different layers of GCN
GCN层数 | ACC/% | ebF1/% | maF1/% | miF1/% |
---|---|---|---|---|
1 | 85.4 | 92.0 | 61.0 | 90.2 |
2 | 85.6 | 92.4 | 61.3 | 90.5 |
3 | 85.0 | 91.6 | 59.7 | 89.7 |
4 | 84.6 | 91.0 | 58.9 | 89.1 |
建模方式 | ACC | ebF1 | maF1 | miF1 |
---|---|---|---|---|
条件概率建模 | 84.8 | 91.2 | 60.6 | 89.7 |
数据驱动方式建模 | 85.6 | 92.4 | 61.3 | 90.5 |
Tab. 6 Comparison of experimental results of different correlation matrix construction methods
建模方式 | ACC | ebF1 | maF1 | miF1 |
---|---|---|---|---|
条件概率建模 | 84.8 | 91.2 | 60.6 | 89.7 |
数据驱动方式建模 | 85.6 | 92.4 | 61.3 | 90.5 |
类型 | ACC | ebF1 | maF1 | miF1 |
---|---|---|---|---|
有激励抑制关系边 | 85.6 | 92.4 | 61.3 | 90.5 |
无激励抑制关系边 | 84.6 | 91.2 | 60.1 | 89.3 |
Tab. 7 Comparison of experimental results of models with and without incentive inhibition relationship edges
类型 | ACC | ebF1 | maF1 | miF1 |
---|---|---|---|---|
有激励抑制关系边 | 85.6 | 92.4 | 61.3 | 90.5 |
无激励抑制关系边 | 84.6 | 91.2 | 60.1 | 89.3 |
模型 | ACC | ebF1 | maF1 | miF1 |
---|---|---|---|---|
本文模型 | 85.6 | 92.4 | 61.3 | 90.5 |
缺少嵌入距离损失函数的模型 | 81.2 | 91.0 | 59.7 | 88.6 |
缺少交叉熵损失函数的模型 | 80.1 | 89.9 | 58.8 | 87.4 |
Tab. 8 Comparison of experimental results of different loss functions
模型 | ACC | ebF1 | maF1 | miF1 |
---|---|---|---|---|
本文模型 | 85.6 | 92.4 | 61.3 | 90.5 |
缺少嵌入距离损失函数的模型 | 81.2 | 91.0 | 59.7 | 88.6 |
缺少交叉熵损失函数的模型 | 80.1 | 89.9 | 58.8 | 87.4 |
ACC/% | ebF1/% | maF1/% | miF1/% | |
---|---|---|---|---|
0.010 | 83.3 | 90.7 | 58.5 | 88.9 |
0.005 | 85.6 | 92.4 | 61.3 | 90.5 |
0.001 | 84.5 | 91.3 | 59.8 | 89.7 |
Tab. 9 Comparison of experimental results of different noise thresholds
ACC/% | ebF1/% | maF1/% | miF1/% | |
---|---|---|---|---|
0.010 | 83.3 | 90.7 | 58.5 | 88.9 |
0.005 | 85.6 | 92.4 | 61.3 | 90.5 |
0.001 | 84.5 | 91.3 | 59.8 | 89.7 |
特征类型 | ACC | ebF1 | maF1 | miF1 |
---|---|---|---|---|
全局共现特征 | 83.0 | 89.8 | 57.5 | 87.9 |
局部动态特征 | 83.5 | 90.3 | 58.2 | 88.5 |
全局+共现 | 85.0 | 92.1 | 60.4 | 89.9 |
Tab. 10 Comparison of experimental results of different features
特征类型 | ACC | ebF1 | maF1 | miF1 |
---|---|---|---|---|
全局共现特征 | 83.0 | 89.8 | 57.5 | 87.9 |
局部动态特征 | 83.5 | 90.3 | 58.2 | 88.5 |
全局+共现 | 85.0 | 92.1 | 60.4 | 89.9 |
参考标签 | 可视化结果 |
---|---|
money-fx | JAPAN STILL WANTS SPECULATIVE DLR DEALS LIMITED The Finance Ministry is still asking financial institutions to limit speculative dollar dealings, Finance Minister Kiichi Miyazawa told reporters. He was responding to rumours in the New York currency market overnight that the Ministry was reducing its pressure on institutions to refrain from excessively speculative dollar dealings. |
dlr | JAPAN STILL WANTS SPECULATIVE DLR DEALS LIMITED The Finance Ministry is still asking financial institutions to limit speculative dollar dealings, Finance Minister Kiichi Miyazawa told reporters. He was responding to rumours in the New York currency market overnight that the Ministry was reducing its pressure on institutions to refrain from excessively speculative dollar dealings. |
Tab. 11 Case study of label attention weight visualization
参考标签 | 可视化结果 |
---|---|
money-fx | JAPAN STILL WANTS SPECULATIVE DLR DEALS LIMITED The Finance Ministry is still asking financial institutions to limit speculative dollar dealings, Finance Minister Kiichi Miyazawa told reporters. He was responding to rumours in the New York currency market overnight that the Ministry was reducing its pressure on institutions to refrain from excessively speculative dollar dealings. |
dlr | JAPAN STILL WANTS SPECULATIVE DLR DEALS LIMITED The Finance Ministry is still asking financial institutions to limit speculative dollar dealings, Finance Minister Kiichi Miyazawa told reporters. He was responding to rumours in the New York currency market overnight that the Ministry was reducing its pressure on institutions to refrain from excessively speculative dollar dealings. |
1 | 李博涵,向宇轩,封顶,等. 融合知识感知与双重注意力的短文本 分类模型[J]. 软件学报, 2022, 33(10):3565-3581. |
LI B H, XIANG Y X, FENG D, et al. Short text classification model combining knowledge aware and dual attention [J]. Journal of Software, 2022, 33(10): 3565-3581. | |
2 | LIU S M, CHEN J H. A multi-label classification based approach for sentiment classification [J]. Expert Systems with Applications, 2015, 42(3):1083-1093. |
3 | LANCHANTIN J, SEKHON A, QI Y. Neural message passing for multi-label classification [C]// Proceedings of the 2019 European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 11907. Cham: Springer, 2020: 138-163. |
4 | BAI J, KONG S, GOMES C. Disentangled variational autoencoder based multi-label classification with covariance-aware multivariate Probit model [C]// Proceedings of the 29th International Joint Conferences on Artificial Intelligence Special Track on AI for CompSust and Human Well-being. California: ijcai.org, 2020: 4313-4321. |
5 | ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multi-label learning [J]. Pattern Recognition, 2007, 40(7): 2038-2048. |
6 | READ J, PFAHRINGER B, HOLMES G. Multi-label classification using ensembles of pruned sets [C]// Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway: IEEE, 2008: 995-1000. |
7 | WANG J, YANG Y, MAO J, et al. CNN-RNN: a unified framework for multi-label image classification [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2285-2294. |
8 | YU H F, JAIN P, KAR P, et al. Large-scale multi-label learning with missing labels [C]// Proceedings of the 31st International Conference on Machine Learning. New York: JMLR.org, 2014: 593-601. |
9 | CHEN C, WANG H, LIU W, et al. Two-stage label embedding via neural factorization machine for multi-label classification [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 304-3311. |
10 | 王少敬,刘鹏飞,邱锡鹏. 基于序列图模型的多标签序列标注[J]. 中文信息学报, 2020, 34(6): 18-26. |
WANG S J, LIU P F, QIU X P. Sequential graph neural networks for multi-label sequence labeling [J]. Journal of Chinese Information Processing, 2020, 34(6): 18-26. | |
11 | YEH C K, WU W C, KO W J, et al. Learning deep latent spaces for multi-label classification [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 2838-2844. |
12 | 刘晓玲,刘柏嵩,王洋洋. 一种基于图卷积网络的文本多标签学习方法[J]. 小型微型计算机系统, 2021, 42(3): 531-535. |
LIU X L, LIU B S, WANG Y Y. Text multi-label learning method based on graph convolutional networks [J]. Journal of Chinese Computer Systems, 2021, 42(3): 531-535. | |
13 | ZHAO W, KONG S, BAI J, et al. HOT-VAE: learning high-order label correlation for multi-label classification via attention-based variational autoencoders [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 15016-15024. |
14 | OZMEN M, ZHANG H, WANG P, et al. Multi-relation message passing for multi-label text classification [C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 3583-3587. |
15 | VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks [EB/OL]. [2023-09-27]. . |
16 | OZMEN M, COTNAREANU J, COATES M. Substituting data annotation with balanced updates and collective loss in multi-label text classification [C]// Proceedings of the 2nd Conference on Lifelong Learning Agents. New York: JMLR.org, 2023: 909-922. |
17 | FAN C, CHEN W, TIAN J, et al. Accurate use of label dependency in multi-label text classification through the lens of causality [J]. Applied Intelligence, 2023, 53: 21841-21857. |
18 | KATAKIS I, TSOUMAKAS G, VLAHAVAS I. Multilabel text classification for automated tag suggestion [EB/OL]. [2023-09-13]. . |
19 | TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Effective and efficient multilabel classification in domains with large number of labels [EB/OL]. [2023-09-25]. . |
20 | LEWIS D D, YANG Y, ROSE T G, et al. RCV1: a new benchmark collection for text categorization research [J]. Journal of Machine Learning Research, 2004, 5: 361-397. |
21 | BENITES F, SAPOZHNIKOVA E. HARAM: a hierarchical ARAM neural network for large-scale text classification [C]// Proceedings of the 2015 IEEE International Conference on Data Mining Workshop. Piscataway: IEEE, 2015: 847-854. |
[1] | Xin LIU, Dawei YANG, Changheng SHAO, Haiwen WANG, Mingjiang PANG, Yanru LI. Hierarchical multi-label classification model for public complaints with long-tailed distribution [J]. Journal of Computer Applications, 2025, 45(1): 82-89. |
[2] | Jinye LI, Ruizhang HUANG, Yongbin QIN, Yanping CHEN, Xiaoyu TIAN. Recognition of sentencing circumstances in adjudication documents based on abductive learning [J]. Journal of Computer Applications, 2022, 42(6): 1802-1807. |
[3] | Wei REN, Hexiang BAI. Multi-label image classification method based on global and local label relationship [J]. Journal of Computer Applications, 2022, 42(5): 1383-1390. |
[4] | Yongchun BAO, Jianchen ZHANG, Shouxin DU, Junjun ZHANG. Multi-label classification algorithm based on non-negative matrix factorization and sparse representation [J]. Journal of Computer Applications, 2022, 42(5): 1375-1382. |
[5] | Anyi WANG, Heng ZHANG. Multi-input multi-output intelligent receiver model based on multi-label classification algorithm [J]. Journal of Computer Applications, 2022, 42(10): 3124-3129. |
[6] | Xueqiang LYU, Chen PENG, Le ZHANG, Zhi’an DONG, Xindong YOU. Text multi-label classification method incorporating BERT and label semantic attention [J]. Journal of Computer Applications, 2022, 42(1): 57-63. |
[7] | Junhua YAN, Ping HOU, Yin ZHANG, Xiangyang LYU, Yue MA, Gaofei WANG. Multiply distortion type judgement method based on multi-scale and multi-classifier convolutional neural network [J]. Journal of Computer Applications, 2021, 41(11): 3178-3184. |
[8] | HU Minjie, LIN Yaojin, WANG Chenxi, TANG Li, ZHENG Liping. Multi-label feature selection algorithm based on Laplacian score [J]. Journal of Computer Applications, 2018, 38(11): 3167-3174. |
[9] | LI Zhaoyu, WANG Jichao, LEI Man, GONG Qin. Multi-label classification algorithm based on gravitational model [J]. Journal of Computer Applications, 2018, 38(10): 2807-2811. |
[10] | TAN Hefeng, LIU Zhengyi. Multi-label K nearest neighbor algorithm by exploiting label correlation [J]. Journal of Computer Applications, 2015, 35(10): 2761-2765. |
[11] | ZHANG Danpu, FU Zhongliang, WANG Lili, LI Xin. Multi-label classification algorithm based on floating threshold classifiers combination [J]. Journal of Computer Applications, 2015, 35(1): 147-151. |
[12] | JIANG Hua QI Yu-shun. Active learning for multi-label classification based on sphere structured SVM [J]. Journal of Computer Applications, 2012, 32(05): 1359-1361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||