Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2747-2754.DOI: 10.11772/j.issn.1001-9081.2024081153
• Artificial intelligence • Previous Articles
Wei ZHANG, Zhongwei GONG(), Zhixin LI, Peihua LUO, Lingling SONG
Received:
2024-08-16
Revised:
2025-01-06
Accepted:
2025-01-10
Online:
2025-02-17
Published:
2025-09-10
Contact:
Zhongwei GONG
About author:
ZHANG Wei, born in 1975, Ph. D., professor. His research interests include big data analysis, data mining, intelligent education evaluation.Supported by:
通讯作者:
龚中伟
作者简介:
张维(1975—),男,湖北仙桃人,教授,博士,主要研究方向:大数据分析、数据挖掘、智能教育评价基金资助:
CLC Number:
Wei ZHANG, Zhongwei GONG, Zhixin LI, Peihua LUO, Lingling SONG. Learning behavior boosted knowledge tracing model[J]. Journal of Computer Applications, 2025, 45(9): 2747-2754.
张维, 龚中伟, 李志新, 罗佩华, 宋玲玲. 学习行为增强的知识追踪模型[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2747-2754.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081153
数据集 | 学生数 | 问题数 | 概念数 | 交互数 |
---|---|---|---|---|
ASSIST2009 | 4 151 | 16 891 | 110 | 325 637 |
ASSIST2012 | 28 834 | 53 091 | 198 | 2 630 080 |
ASSISTChall | 1 709 | 102 | 3 162 | 942 816 |
Tab. 1 Basic information of datasets
数据集 | 学生数 | 问题数 | 概念数 | 交互数 |
---|---|---|---|---|
ASSIST2009 | 4 151 | 16 891 | 110 | 325 637 |
ASSIST2012 | 28 834 | 53 091 | 198 | 2 630 080 |
ASSISTChall | 1 709 | 102 | 3 162 | 942 816 |
模型 | ASSIST2009 | ASSIST2012 | ASSISTChall | |||
---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | |
DKT | 70.6 | 69.0 | 71.7 | 72.5 | 72.3 | 71.4 |
DKVMN | 72.2 | 71.1 | 71.9 | 72.9 | 73.2 | 71.2 |
SAKT | 78.6 | 76.9 | 72.4 | 73.2 | 72.6 | 71.4 |
AKT | 77.1 | 77.2 | 72.4 | |||
LPKT | 76.0 | 72.9 | 79.4 | 73.4 | 79.9 | 74.1 |
LPKT-S | 78.1 | 73.6 | 74.2 | |||
LBBKT | 83.8 | 84.1 | 82.7 | 77.9 | 85.1 | 75.2 |
Tab. 2 Prediction performance of different models on three datasets
模型 | ASSIST2009 | ASSIST2012 | ASSISTChall | |||
---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | |
DKT | 70.6 | 69.0 | 71.7 | 72.5 | 72.3 | 71.4 |
DKVMN | 72.2 | 71.1 | 71.9 | 72.9 | 73.2 | 71.2 |
SAKT | 78.6 | 76.9 | 72.4 | 73.2 | 72.6 | 71.4 |
AKT | 77.1 | 77.2 | 72.4 | |||
LPKT | 76.0 | 72.9 | 79.4 | 73.4 | 79.9 | 74.1 |
LPKT-S | 78.1 | 73.6 | 74.2 | |||
LBBKT | 83.8 | 84.1 | 82.7 | 77.9 | 85.1 | 75.2 |
模型 | ASSIST2009 | ASSISTChall | ||
---|---|---|---|---|
AUC | ACC | AUC | ACC | |
LBBKT-NB | 82.7 | 83.4 | 84.4 | 74.2 |
LBBKT-NV | 83.1 | 83.5 | 83.7 | 73.6 |
LBBKT-NG | 82.6 | 83.1 | 83.9 | 73.8 |
LBBKT | 83.8 | 84.1 | 85.1 | 75.2 |
Tab. 3 Results of ablation experiments
模型 | ASSIST2009 | ASSISTChall | ||
---|---|---|---|---|
AUC | ACC | AUC | ACC | |
LBBKT-NB | 82.7 | 83.4 | 84.4 | 74.2 |
LBBKT-NV | 83.1 | 83.5 | 83.7 | 73.6 |
LBBKT-NG | 82.6 | 83.1 | 83.9 | 73.8 |
LBBKT | 83.8 | 84.1 | 85.1 | 75.2 |
[1] | 刘铁园,陈威,常亮,等. 基于深度学习的知识追踪研究进展[J]. 计算机研究与发展, 2022, 59(1):81-104. |
LIU T Y, CHEN W, CHANG L, et al. Research advances in the knowledge tracing based on deep learning [J]. Journal of Computer Research and Development, 2022, 59(1): 81-104. | |
[2] | CORBETT A T, ANDERSON J R. Knowledge tracing: modeling the acquisition of procedural knowledge [J]. User Modeling and User-Adapted Interaction, 1994, 4: 253-278. |
[3] | DiBELLO L V, ROUSSOS L A, STOUT W. Review of cognitively diagnostic assessment and a summary of psychometric models [J]. Handbook of Statistics, 2006, 26: 979-1030. |
[4] | PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing[C]// Proceedings of the 29th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2015: 505-513. |
[5] | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
[6] | SHEN S, LIU Q, CHEN E, et al. Convolutional knowledge tracing: modeling individualization in student learning process [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1857-1860. |
[7] | LIU S, YU J, LI Q, et al. Ability boosted knowledge tracing [J]. Information Sciences, 2022, 596: 567-587. |
[8] | XU B, HUANG Z, LIU J, et al. Learning behavior-oriented knowledge tracing [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 2789-2800. |
[9] | NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3101-3107. |
[10] | 张凯,覃正楚,刘月,等. 多学习行为协同的知识追踪模型[J]. 计算机应用, 2023, 43(5): 1422-1429. |
ZHANG K, QIN Z C, LIU Y, et al. Multi-learning behavior collaborated knowledge tracing model [J]. Journal of Computer Applications, 2023, 43(5): 1422-1429. | |
[11] | SHEN S, CHEN E, LIU Q, et al. Monitoring student progress for learning process-consistent knowledge tracing [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8213-8227. |
[12] | LIM B, ARIK S Ö, LOEFF N, et al. Temporal fusion Transformers for interpretable multi-horizon time series forecasting [J]. International Journal of Forecasting, 2021, 37(4): 1748-1764. |
[13] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[14] | 梁琨,任依梦,尚余虎,等. 深度学习驱动的知识追踪研究进展综述[J].计算机工程与应用, 2021, 57(21):41-58. |
LIANG K, REN Y M, SHANG Y H, et al. Review of knowledge tracing preprocessing based on deep learning [J]. Computer Engineering and Applications, 2021, 57(21): 41-58. | |
[15] | ZHANG J, SHI X, KING I, et al. Dynamic key-value memory networks for knowledge tracing [C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 765-774. |
[16] | GRAVES A, WAYNE G, REYNOLDS M, et al. Hybrid computing using a neural network with dynamic external memory[J]. Nature, 2016, 538(7626): 471-476. |
[17] | SUN X, ZHAO X, LI B, et al. Dynamic key-value memory networks with rich features for knowledge tracing [J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8239-8245. |
[18] | ZHANG W, GONG Z, LUO P, et al. DKVMN-KAPS: dynamic key-value memory networks knowledge tracing with students’ knowledge-absorption ability and problem-solving ability [J]. IEEE Access, 2024, 12: 55146-55156. |
[19] | NAKAGAWA H, IWASAWA Y, MATSUO Y. Graph-based knowledge tracing: modeling student proficiency using graph neural network [C]// Proceedings of the 2019 IEEE/WIC/ACM International Conference on Web Intelligence. New York: ACM, 2019: 156-163. |
[20] | YANG Y, SHEN J, QU Y, et al. GIKT: a graph-based interaction model for knowledge tracing [C]// Proceedings of the 2020 European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 12457. Cham: Springer, 2021: 299-315. |
[21] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2024-06-20]. . |
[22] | NI Q, WEI T, ZHAO J, et al. HHSKT: a learner-question interactions based heterogeneous graph neural network model for knowledge tracing [J]. Expert Systems with Applications, 2023, 215: No.119334. |
[23] | 张维,李志新,龚中伟,等. 练习嵌入和学习遗忘特征增强的知识追踪模型[J]. 计算机应用研究, 2024, 41(11):3265-3271. |
ZHANG W, LI Z X, GONG Z W, et al. Exercise embeddings and learning-forgetting features boosted knowledge tracing [J]. Application Research of Computers, 2024, 41(11): 3265-3271. | |
[24] | 张维,罗佩华,龚中伟,等. 多关系和时间增强的知识追踪模型[J].计算机应用研究, 2025, 42(3): 728-734. |
ZHANG W, LUO P H, GONG Z W, et al. Multiple relations and time enhanced knowledge tracing model [J]. Application Research of Computers, 2025, 42(3): 728-734. | |
[25] | 邵小萌,张猛. 融合注意力机制的时间卷积知识追踪模型[J]. 计算机应用, 2023, 43(2):343-348. |
SHAO X M, ZHANG M. Temporal convolutional knowledge tracing model with attention mechanism [J]. Journal of Computer Applications, 2023, 43(2): 343-348. | |
[26] | PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing [C]// Proceedings of the 12th International Conference on Educational Data Mining. Massachusetts: International Educational Data Mining Society, 2019: 384-389. |
[27] | CHOI Y, LEE Y, CHO J, et al. Towards an appropriate query, key, and value computation for knowledge tracing [C]// Proceedings of the 7th ACM Conference on Learning @ Scale. New York: ACM, 2020: 341-344. |
[28] | SHIN D, SHIM Y, YU H, et al. SAINT+: integrating temporal features for EdNet correctness prediction [C]// Proceedings of the 11th International Learning Analytics and Knowledge Conference. New York: ACM, 2021: 490-496. |
[29] | GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2330-2339. |
[30] | XIAO Y, XIAO R, HUANG N, et al. Knowledge tracing based on multi-feature fusion [J]. Neural Computing and Applications, 2023, 35(2): 1819-1833. |
[31] | PANDEY S, SRIVASTAVA J. RKT: relation-aware self-attention for knowledge tracing [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1205-1214. |
[32] | 贾瑞,董永权,刘源,等. 知识点相关性与遗忘程度融合的深度知识追踪模型[J]. 计算机研究与发展, 2025, 62(2): 364-373. |
JIA R, DONG Y Q, LIU Y, et al. Deep knowledge tracing model with the integration of skills relation and forgetting degree [J]. Journal of Computer Research and Development, 2025, 62(2): 364-373. | |
[33] | HUANG T, HU S, YANG H, et al. Response speed enhanced fine-grained knowledge tracing: a multi-task learning perspective[J]. Expert Systems with Applications, 2023, 238(Pt D): No.122107. |
[34] | ZHANG W, HU S, QU K. Graph attention neural network model with behavior features for knowledge tracking [J]. IEEE Access, 2023, 11: 88329-88338. |
[35] | 李晓光,魏思齐,张昕,等. LFKT:学习与遗忘融合的深度知识追踪模型[J]. 软件学报, 2021, 32(3): 818-830. |
LI X G, WEI S Q, ZHANG X, et al. LFKT: deep knowledge tracing model with learning and forgetting behavior merging [J]. Journal of Software, 2021, 32(3): 818-830. | |
[36] | SHEN S, LIU Q, CHEN E, et al. Learning process-consistent knowledge tracing [C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1452-1460. |
[37] | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2024-06-05].. |
[38] | FENG M, HEFFERNAN N, KOEDINGER K. Addressing the assessment challenge with an online system that tutors as it assesses[J]. User Modeling and User-Adapted Interaction, 2009, 19: 243-266. |
[39] | PARDOS Z A, BAKER R S J D, PEDRO M O C Z SAN, et al. Affective states and state tests: investigating how affect throughout the school year predicts end of year learning outcomes [C]// Proceedings of the 3rd International Conference on Learning Analytics and Knowledge. New York: ACM, 2013: 117-124. |
[40] | PATIKORN T, BAKER R S, HEFFERNAN N T. ASSISTments longitudinal data mining competition special issue: a preface [J]. Journal of Educational Data Mining, 2020, 12(2): 1-11. |
[1] | Yajuan ZHAO, Fanjun MENG, Xingjian XU. Review of online education learner knowledge tracing [J]. Journal of Computer Applications, 2024, 44(6): 1683-1698. |
[2] | Linhao LI, Xiaoqian ZHANG, Yao DONG, Xu WANG, Yongfeng DONG. Knowledge tracing based on personalized learning and deep refinement [J]. Journal of Computer Applications, 2024, 44(10): 3039-3046. |
[3] | Kai ZHANG, Zhengchu QIN, Yue LIU, Xinyi QIN. Multi-learning behavior collaborated knowledge tracing model [J]. Journal of Computer Applications, 2023, 43(5): 1422-1429. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||