Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2934-2940.DOI: 10.11772/j.issn.1001-9081.2024091362
• Advanced computing • Previous Articles
Received:
2024-09-24
Revised:
2024-11-12
Accepted:
2024-11-13
Online:
2024-11-26
Published:
2025-09-10
Contact:
Yonghao LIANG
About author:
LI Jinlong, born in 1975, Ph. D., associate professor. His research interests include deep learning, artificial intelligence, evolutionary algorithm.
通讯作者:
梁永濠
作者简介:
李金龙(1975—),男,湖南永州人,副教授,博士,主要研究方向:深度学习、人工智能、进化算法。
CLC Number:
Yonghao LIANG, Jinlong LI. Novel message passing network for neural Boolean satisfiability problem solver[J]. Journal of Computer Applications, 2025, 45(9): 2934-2940.
梁永濠, 李金龙. 用于神经布尔可满足性问题求解器的新型消息传递网络[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2934-2940.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024091362
变量数 | NeuroSAT的准确率/% | NeuroSAT-M的准确率/% | QuerySAT的准确率/% | QuerySAT-M的准确率/% | AEEV的准确率/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
T=29 | T=212 | T=29 | T=212 | T=29 | T=212 | T=29 | T=212 | T=29 | T=212 | |
100 | 86.78 | 89.51 | 96.34 | 99.59 | 98.53 | 99.70 | 99.39 | 99.96 | 99.22 | 99.91 |
150 | 76.45 | 80.20 | 91.08 | 98.72 | 95.21 | 98.63 | 98.02 | 99.78 | 97.72 | 99.75 |
200 | 68.70 | 73.09 | 84.40 | 96.85 | 89.88 | 96.17 | 95.36 | 99.31 | 94.52 | 99.31 |
250 | 59.76 | 64.76 | 74.37 | 93.96 | 82.47 | 92.01 | 90.89 | 98.69 | 90.22 | 98.42 |
300 | 53.68 | 59.28 | 67.21 | 92.12 | 73.23 | 85.34 | 85.55 | 97.52 | 85.20 | 97.13 |
350 | 47.12 | 52.15 | 58.20 | 88.56 | 62.67 | 74.76 | 80.41 | 95.75 | 78.60 | 95.27 |
400 | 39.90 | 45.88 | 50.36 | 84.79 | 53.13 | 62.34 | 73.62 | 94.55 | 70.18 | 92.18 |
450 | 35.20 | 40.64 | 46.01 | 80.21 | 45.09 | 51.87 | 66.27 | 90.72 | 64.89 | 89.37 |
500 | 30.87 | 37.12 | 38.59 | 75.06 | 35.84 | 41.79 | 58.06 | 87.15 | 56.11 | 85.21 |
550 | 26.57 | 32.06 | 32.21 | 69.45 | 29.35 | 35.51 | 49.01 | 80.86 | 45.98 | 78.62 |
600 | 24.29 | 30.33 | 29.40 | 66.02 | 26.68 | 32.56 | 45.54 | 78.68 | 40.58 | 76.96 |
Tab. 1 Accuracy comparison of NeuroSAT, NeuroSAT-M, QuerySAT, QuerySAT-M and AEEV
变量数 | NeuroSAT的准确率/% | NeuroSAT-M的准确率/% | QuerySAT的准确率/% | QuerySAT-M的准确率/% | AEEV的准确率/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
T=29 | T=212 | T=29 | T=212 | T=29 | T=212 | T=29 | T=212 | T=29 | T=212 | |
100 | 86.78 | 89.51 | 96.34 | 99.59 | 98.53 | 99.70 | 99.39 | 99.96 | 99.22 | 99.91 |
150 | 76.45 | 80.20 | 91.08 | 98.72 | 95.21 | 98.63 | 98.02 | 99.78 | 97.72 | 99.75 |
200 | 68.70 | 73.09 | 84.40 | 96.85 | 89.88 | 96.17 | 95.36 | 99.31 | 94.52 | 99.31 |
250 | 59.76 | 64.76 | 74.37 | 93.96 | 82.47 | 92.01 | 90.89 | 98.69 | 90.22 | 98.42 |
300 | 53.68 | 59.28 | 67.21 | 92.12 | 73.23 | 85.34 | 85.55 | 97.52 | 85.20 | 97.13 |
350 | 47.12 | 52.15 | 58.20 | 88.56 | 62.67 | 74.76 | 80.41 | 95.75 | 78.60 | 95.27 |
400 | 39.90 | 45.88 | 50.36 | 84.79 | 53.13 | 62.34 | 73.62 | 94.55 | 70.18 | 92.18 |
450 | 35.20 | 40.64 | 46.01 | 80.21 | 45.09 | 51.87 | 66.27 | 90.72 | 64.89 | 89.37 |
500 | 30.87 | 37.12 | 38.59 | 75.06 | 35.84 | 41.79 | 58.06 | 87.15 | 56.11 | 85.21 |
550 | 26.57 | 32.06 | 32.21 | 69.45 | 29.35 | 35.51 | 49.01 | 80.86 | 45.98 | 78.62 |
600 | 24.29 | 30.33 | 29.40 | 66.02 | 26.68 | 32.56 | 45.54 | 78.68 | 40.58 | 76.96 |
迭代次数 上限 | 不同模块的准确率/% | |||
---|---|---|---|---|
QuerySAT | +O | +J | +O+J | |
27 | 39.91 | 45.16 | 42.96 | 45.98 |
28 | 47.35 | 55.76 | 56.68 | 61.13 |
29 | 53.13 | 64.64 | 69.59 | 73.62 |
210 | 56.91 | 72.13 | 79.51 | 82.90 |
211 | 59.96 | 77.57 | 85.27 | 89.44 |
Tab. 2 Accuracy comparison of different modules in ablation study
迭代次数 上限 | 不同模块的准确率/% | |||
---|---|---|---|---|
QuerySAT | +O | +J | +O+J | |
27 | 39.91 | 45.16 | 42.96 | 45.98 |
28 | 47.35 | 55.76 | 56.68 | 61.13 |
29 | 53.13 | 64.64 | 69.59 | 73.62 |
210 | 56.91 | 72.13 | 79.51 | 82.90 |
211 | 59.96 | 77.57 | 85.27 | 89.44 |
β | 不同网络的准确率/% | |
---|---|---|
NeuroSAT-M | QuerySAT-M | |
23 | 40.39 | 21.42 |
24 | 71.67 | 41.98 |
25 | 89.59 | 78.65 |
26 | 92.11 | 79.49 |
27 | 91.23 | 78.28 |
28 | 91.36 | 73.50 |
Tab. 3 Solving accuracy varying with value of β
β | 不同网络的准确率/% | |
---|---|---|
NeuroSAT-M | QuerySAT-M | |
23 | 40.39 | 21.42 |
24 | 71.67 | 41.98 |
25 | 89.59 | 78.65 |
26 | 92.11 | 79.49 |
27 | 91.23 | 78.28 |
28 | 91.36 | 73.50 |
模型 | 求解准确率/% | 求解耗时/s |
---|---|---|
NeuroSAT | 38.86 | 1 261 |
NeuroSAT-M | 52.12 | 1 037 |
QuerySAT | 50.64 | 880 |
QuerySAT-M | 60.96 | 752 |
Tab. 4 Performance comparison of different models on SAT competition dataset
模型 | 求解准确率/% | 求解耗时/s |
---|---|---|
NeuroSAT | 38.86 | 1 261 |
NeuroSAT-M | 52.12 | 1 037 |
QuerySAT | 50.64 | 880 |
QuerySAT-M | 60.96 | 752 |
[1] | COOK S A. The complexity of theorem-proving procedures [M]// Logic, automata, and computational complexity: the works of Stephen A. Cook. New York: ACM, 2023: 143-152. |
[2] | VIZEL Y, WEISSENBACHER G, MALIK S. Boolean satisfiability solvers and their applications in model checking [J]. Proceedings of the IEEE, 2015, 103(11): 2021-2035. |
[3] | KUEHLMANN A, PARUTHI V, KROHM F, et al. Robust Boolean reasoning for equivalence checking and functional property verification [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2002, 21(12): 1377-1394. |
[4] | IVANČIĆ F, YANG Z, GANAI M K, et al. Efficient SAT-based bounded model checking for software verification [J]. Theoretical Computer Science, 2008, 404(3): 256-274. |
[5] | PRASAD M R, BIERE A, GUPTA A. A survey of recent advances in SAT-based formal verification [J]. International Journal on Software Tools for Technology Transfer, 2005, 7(2): 156-173. |
[6] | MIRONOV I, ZHANG L. Applications of SAT solvers to cryptanalysis of hash functions [C]// Proceedings of the 2006 International Conference on Theory and Applications of Satisfiability Testing, LNCS 4121. Berlin: Springer, 2006: 102-115. |
[7] | PLACHETTA R, VAN DER GRINTEN A. SAT-and-reduce for vertex cover: accelerating branch-and-reduce by sat solving [C]// Proceedings of the 2021 Workshop on Algorithm Engineering and Experiments. Philadelphia, PA: SIAM, 2021: 169-180. |
[8] | SKANSI S, ŠEKRST K, KARDUM M. A different approach for clique and household analysis in synthetic telecom data using propositional logic [C]// Proceedings of the 43rd International Convention on Information, Communication and Electronic Technology. Piscataway: IEEE, 2020: 1286-1289. |
[9] | VELEV M N. Exploiting hierarchy and structure to efficiently solve graph coloring as SAT [C]// Proceedings of the 2007 IEEE/ACM International Conference on Computer-Aided Design. Piscataway: IEEE, 2007: 135-142. |
[10] | 郭莹,张长胜,张斌. 求解SAT问题的算法的研究进展[J]. 计算机科学, 2016, 43(3):8-17. |
GUO Y, ZHANG C S, ZHANG B. Research advance of SAT solving algorithm [J]. Computer Science, 2016, 43(3):8-17. | |
[11] | 谢志新,王晓峰,曹泽轩,等. 求解可满足性问题的信息传播算法研究综述[J]. 计算机应用研究, 2022, 39(7):1933-1940. |
XIE Z X, WANG X F, CAO Z X, et.al. Overview of message propagation algorithm for satisfiability problems [J]. Application Research of Computers, 2022, 39(7):1933-1940. | |
[12] | GUO W, ZHEN H L, LI X, et al. Machine learning methods in solving the Boolean satisfiability problem [J]. Machine Intelligence Research, 2023, 20(5): 640-655. |
[13] | AMIZADEH S, MATUSEVYCH S, WEIMER M. Learning to solve Circuit-SAT: an unsupervised differentiable approach [EB/OL]. [2024-03-12].. |
[14] | ZHANG C, ZHANG Y, MAO J, et al. Towards better generalization for neural network-based sat solvers [C]// Proceedings of the 2022 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 13281. Cham: Springer, 2022: 199-210. |
[15] | SELSAM D, LAMM M, BÜNZ B, et al. Learning a SAT solver from single-bit supervision [EB/OL]. [2024-04-15].. |
[16] | OZOLINS E, FREIVALDS K, DRAGUNS A, et al. Goal-aware neural SAT solver[C]// Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-8. |
[17] | LI Z, SI X. NSNet: a general neural probabilistic framework for satisfiability problems [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 25573-25585. |
[18] | BIERE A, HEULE M, VAN MAAREN H, et al. Handbook of satisfiability [M]. Amsterdam: IOS Press, 2009. |
[19] | GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1263-1272. |
[20] | BATATIA I, KOVÁCS D P, SIMM G N C, et al. MACE: higher order equivariant message passing neural networks for fast and accurate force fields [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 11423-11436. |
[21] | TSEITIN G S. On the complexity of derivation in propositional calculus [M]// SIEKMANN H, WRIGHTSON G. Automation of reasoning 2: classical papers on computational logic 1967—1970, SYMBOLIC. Berlin: Springer, 1983: 466-483. |
[22] | BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks [EB/OL]. [2024-09-23].. |
[23] | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network mode l [J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80. |
[24] | 龙峥嵘,李金龙,梁永濠. 基于SAT问题实例特性的端到端SAT求解模型[J]. 计算机应用研究, 2024, 41(11): 3376-3381. |
LONG Z R, LI J L, LIANG Y H. End-to-end SAT assignment model based on instance related characteristics of SAT [J]. Application Research of Computers, 2024, 41(11): 3376-3381. | |
[25] | CRAWFORD J M, AUTON L D. Experimental results on the crossover point in random 3-SAT [J]. Artificial Intelligence, 1996, 81(1/2): 31-57. |
[26] | LAURIA M, ELFFERS J, NORDSTRÖM J, et al. CNFGen: a generator of crafted benchmarks [C]// Proceedings of the 2017 International Conference on Theory and Applications of Satisfiability Testing, LNCS 10491. Cham: Springer, 2017: 464-473. |
[27] | CAMERON C, CHEN R, HARTFORD J, et al. Predicting propositional satisfiability via end-to-end learning [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 3324-3331. |
[1] | Yilin DENG, Fajiang YU. Pseudo random number generator based on LSTM and separable self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(9): 2893-2901. |
[2] | Chao LIU, Yanhua YU. Knowledge-aware recommendation model combining denoising strategy and multi-view contrastive learning [J]. Journal of Computer Applications, 2025, 45(9): 2827-2837. |
[3] | Jintao SU, Lina GE, Liguang XIAO, Jing ZOU, Zhe WANG. Detection and defense scheme for backdoor attacks in federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2399-2408. |
[4] | Lina GE, Mingyu WANG, Lei TIAN. Review of research on efficiency of federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2387-2398. |
[5] | Yi WANG, Yinglong MA. Multi-task social item recommendation method based on dynamic adaptive generation of item graph [J]. Journal of Computer Applications, 2025, 45(8): 2592-2599. |
[6] | Yinchuan TU, Yong GUO, Heng MAO, Yi REN, Jianfeng ZHANG, Bao LI. Evaluation of training efficiency and training performance of graph neural network models based on distributed environment [J]. Journal of Computer Applications, 2025, 45(8): 2409-2420. |
[7] | Quan JIANG, Wenqing HUANG, Zhiyong GOU. Lagrangian particle flow simulation by equivariant graph neural network [J]. Journal of Computer Applications, 2025, 45(8): 2666-2671. |
[8] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
[9] | Zimo ZHANG, Xuezhuan ZHAO. Multi-scale sparse graph guided vision graph neural networks [J]. Journal of Computer Applications, 2025, 45(7): 2188-2194. |
[10] | Danyang CHEN, Changlun ZHANG. Multi-scale decorrelation graph convolutional network model [J]. Journal of Computer Applications, 2025, 45(7): 2180-2187. |
[11] | Yuelan ZHANG, Jing SU, Hangyu ZHAO, Baili YANG. Multi-view knowledge-aware and interactive distillation recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(7): 2211-2220. |
[12] | Xiaoyang ZHAO, Xinzheng XU, Zhongnian LI. Research review on explainable artificial intelligence in internet of things applications [J]. Journal of Computer Applications, 2025, 45(7): 2169-2179. |
[13] | Chaoying JIANG, Qian LI, Ning LIU, Lei LIU, Lizhen CUI. Readmission prediction model based on graph contrastive learning [J]. Journal of Computer Applications, 2025, 45(6): 1784-1792. |
[14] | Shujian GUO, Jieyue YU, Xuesong YIN. Graph regularized elastic net subspace clustering [J]. Journal of Computer Applications, 2025, 45(5): 1464-1471. |
[15] | Junyi ZHU, Leilei CHANG, Xiaobin XU, Zhiyong HAO, Haiyue YU, Jiang JIANG. Self-supervised learning method using minimal prior knowledge [J]. Journal of Computer Applications, 2025, 45(4): 1035-1041. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||