[1] HUANG G, ZENG F, WEN H. Uncetainty measures of rough set based on conditional possibility [J]. Control and Decision, 2015, 30(6): 1099-1105.(黄国顺, 曾凡智, 文翰. 基于条件概率的粗糙集的不确定性度量[J]. 控制与决策, 2015, 30(6):1099-1105.) [2] DUNTSCH I, GEDIGA G. Uncertainty measures of rough set prediction [J]. Artificial intelligence, 1998, 106(1): 109-137. [3] WIERMAN M J. Measuring uncertainty in rough set theory [J]. International Journal of General System, 1999, 28(4/5): 283-297. [4] BEAUBOUEF T, PETRY F E, ARORA G. Information-theoretic measures of uncertainty for rough sets and rough relational databases [J]. Information Sciences, 1998, 109 (1/2/3/4): 185-195. [5] MIAO D, WANG J. On the relationships between information entropy and roughness of knowledge in rough set [J]. Pattern Recognition and Artificial Intelligence, 1998, 11(3):34-40.(苗夺谦,王珏.粗糙集理论中知识粗糙性与信息熵关系的讨论[J].模式识别与人工智能,1998,11(3): 34-40.) [6] WANG G, YU H, YANG D. Decision table reduction based on conditional information entropy [J]. Chinese Journal of Computers, 2002, 25(7):759-766. (王国胤,于洪,杨大春. 基于条件信息熵的决策表约简[J]. 计算机学报, 2002, 25 (7): 759-766.) [7] WANG G, ZHAO J, AN J, et al. A comparative study of algebra viewpoint and information viewpoint in attribute reduction [J]. Fundamenta Informaticae, 2005, 68(3): 289-301. [8] PAWLAK Z. Rough set: theoretical aspects of reasoning about data [M]. Boston: Kluwer Academic, 1991:16-56. [9] YAO Y. The superiority of three-way decisions in probabilistic rough set models [J]. Information Sciences, 2011, 181(6): 1080-1096. [10] CHENG Y, ZHANG Y, HU X. Entropy of knowledge and rough set based on boundary region [J]. Journal of System Simulation, 2007 19(9):2008-2011.(程玉胜, 张佑生, 胡学钢. 基于边界域的知识粗糙熵与粗集粗糙熵[J].系统仿真学报, 2007,19(9):2008-2011.) [11] CHENG Y, ZHANG Y, HU X. Feature reduction based on boundary conditional entropy and its application in qualitative simulation [J]. Journal of University of Science and Technology of China, 2008, 38(10): 1202-1210. [12] CONG R, LI K, MENG X. Uncerntainty measure criterion based on conditional entropy of boundary region [J]. Systems Engineering and Electronics, 2013, 35(7):1554-1557.(丛蓉,李凯,孟祥宇. 基于边界域条件熵的不确定性度量标准[J]. 系统工程与电子技术,2013,35(7): 1554-1557.) [13] SUN L, XU J, TIAN Y. Feature selection using rough entropy-based uncertainty measures in incomplete decision systems [J]. Knowledge-Based Systems, 2012, 36(6): 206-216. [14] LIANG J, WANG J, QIAN Y. A new measure of uncertainty based on knowledge granulation for rough sets [J]. Information Sciences, 2009,179(4):458-470. [15] HUANG G, ZENG F, CHEN G, et al. Knowledge granularity and relative granularity based on strictly convex function[J]. Pattern Recognition and Artificial Intelligence, 2013, 26(10):897-908.(黄国顺, 曾凡智, 陈广义,等. 基于严凸函数的知识粒度与相对粒度 [J]. 模式识别与人工智能, 2013, 26(10):897-90.) |