[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356. [2] 王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学报,2009,32(7):1229-1246. (WANG G Y, YAO Y Y, YU H. A survey on rough set theory and applications[J]. Chinese Journal of Computers, 2009, 32(7):1229-1246.) [3] LI D, ZHANG B, LEUNG Y. On knowledge reduction in inconsistent decision information systems[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2004, 12(5):651-672. [4] QIAN Y, LIANG J, PEDRYCZ W, et al. Positive approximation:an accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence, 2010, 174(9/10):597-618. [5] 苗夺谦,胡桂荣.知识约简的一种启发式算法[J].计算机研究与发展,1999,36(6):681-684. (MIAO D Q, HU G R. A heuristic algorithm for reduction of knowledge[J]. Journal of Computer Research and Development, 1999, 36(6):681-684.) [6] XU W, LI Y, LIAO X. Approaches to attribute reductions based on rough set and matrix computation in inconsistent ordered information systems[J]. Knowledge-Based Systems, 2012, 27:78-91. [7] MIN F, HE H, QIAN Y, et al. Test-cost-sensitive attribute reduction[J]. Information Sciences, 2011, 181(22):4928-4942. [8] HU X, CERCONE N. Learning in relational databases:a rough set approach[J]. International Journal of Computational Intelligence, 1995, 11(2):323-338. [9] QIAN Y, LIANG X, WANG Q, et al. Local rough set:a solution to rough data analysis in big data[J]. International Journal of Approximate Reasoning, 2018, 97:38-63. [10] JIA X, LIAO W, TANG Z, et al. Minimum cost attribute reduction in decision-theoretic rough set models[J]. Information Sciences, 2013, 219:151-167. [11] LEUNG Y, FISCHER M M, WU W-Z, et al. A rough set approach for the discovery of classification rules in interval-valued information systems[J]. International Journal of Approximate Reasoning, 2008, 47(2):233-246. [12] 张楠,苗夺谦,岳晓冬.区间值信息系统的知识约简[J].计算机研究与发展,2010,47(8):1362-1371. (ZHANG N, MIAO D Q, YUE X D. Approaches to knowledge reduction in interval-valued information systems[J]. Journal of Computer Research and Development, 2010, 47(8):1362-1371.) [13] 刘鹏惠,陈子春,秦克云.区间值信息系统的决策属性约简[J].计算机工程与应用,2009,45(28):148-151. (LIU P H, CHEN Z C, QIN K Y. Decision attribute reduction of interval-valued information system[J]. Computer Engineering and Applications, 2009, 45(28):148-151.) [14] 徐菲菲,雷景生,毕忠勤,等.大数据环境下多决策表的区间值全局近似约简[J].软件学报,2014,25(9):2119-2135. (XU F F, LEI J S, BI Z Q, et al. Approaches to approximate reduction with interval-valued multi-decision tables in big data[J]. Journal of Software, 2014, 25(9):2119-2135.) [15] DAI J, WANG W, XU Q, et al. Uncertainty measurement for interval-valued decision systems based on extended conditional entropy[J]. Knowledge-Based Systems, 2012, 27:443-450. [16] SHU W, QIAN W, XIE Y. Incremental approaches for feature selection from dynamic data with the variation of multiple objects[J]. Knowledge-Based Systems, 2019, 163:320-331. [17] JING Y, LI T, FUJITA H, et al. An incremental attribute reduction method for dynamic data mining[J]. Information Sciences, 2018, 465:202-218. [18] WEI W, WU X, LIANG J, et al. Discernibility matrix based incremental attribute reduction for dynamic data[J]. Knowledge-Based Systems, 2018, 140:142-157. [19] XIE X, QIN X. A novel incremental attribute reduction approach for dynamic incomplete decision systems[J]. International Journal of Approximate Reasoning, 2018, 93:443-462. [20] HU F, WANG G Y, HUANG H, et al. Incremental attribute reduction based on elementary sets[C]//Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, LNCS 3641. Berlin:Springer, 2005:185-193. [21] XU Y, WANG L, ZHANG R. A dynamic attribute reduction algorithm based on 0-1 integer programming[J]. Knowledge-Based Systems, 2011, 24(8):1341-1347. [22] 杨明.一种基于改进差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822. (YANG M. An incremental updating algorithm for attribute reduction based on improved discernibility matrix[J]. Chinese Journal of Computers, 2007, 30(5):815-822.) [23] LIANG J, WANG F, DANG C, et al. A group incremental approach to feature selection applying rough set technique[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2):294-308. [24] SHU W, QIAN W. An incremental approach to attribute reduction from dynamic incomplete decision systems in rough set theory[J]. Data and Knowledge Engineering, 2015, 100(Part A):116-132. [25] YU J, XU W. Incremental knowledge discovering in interval-valued decision information system with the dynamic data[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(3):849-864. [26] WANG F, LIANG J, QIAN Y. Attribute reduction:a dimension incremental strategy[J]. Knowledge-Based Systems, 2013, 39:95-108. [27] LIU D, LI T, ZHANG J. Incremental updating approximations in probabilistic rough sets under the variation of attributes[J]. Knowledge-Based Systems, 2015, 73:81-96. [28] CHENG Y. The incremental method for fast computing the rough fuzzy approximations[J]. Data and Knowledge Engineering, 2011, 70(1):84-100. [29] CHEN H, LI T, QIAO S, et al. A rough set based dynamic maintenance approach for approximations in coarsening and refining attribute values[J]. International Journal of Intelligent Systems, 2010, 25(10):1005-1026. [30] 张楠,许鑫,童向荣,等.不协调区间值决策系统的知识约简[J].小型微型计算机系统,2017,38(7):1585-1589. (ZHANG N, XU X, TONG X R, et al. Knowledge reduction in inconsistent interval-valued decision systems[J]. Journal of Chinese Computer Systems, 2017, 38(7):1585-1589.) [31] DAI J-H, HU H, ZHENG G-J, et al. Attribute reduction in interval-valued information systems based on information entropies[J]. Frontiers of Information Technology and Electronic Engineering, 2016, 17(9):919-928. [32] ZHANG X, MEI C, CHEN D, et al. Multi-confidence rule acquisition and confidence-preserved attribute reduction in interval-valued decision systems[J]. International Journal of Approximate Reasoning, 2014, 55(8):1787-1804. |