[1] JOLLIFFE I T. Principal component analysis [M]. 2nd ed. Berlin: Springer, 2002. [2] SHI J, ZHENG X, WEI Z, et al. Survey on algorithms of low-rank matrix recovery[J]. Applications Research of Computers, 2013, 30(6): 1601-1605. (史加荣,郑秀云,魏宗田,等. 低秩矩阵恢复算法综述[J]. 计算机应用研究, 2013, 30(6): 1601-1605.) [3] SHI J, ZHENG X, ZHOU S. Research progress in matrix completion algorithms [J]. Computer Science, 2014, 41(4):13-20. (史加荣,郑秀云,周水生. 矩阵补全算法研究进展[J].计算机科学, 2014, 41(4):13-20.) [4] WRIGHT J, GANESH A, RAO S, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization [C]//Proceedings of the 2009 Neural Information Processing Systems. British Columbia: [s.n.], 2009:2080-2088. [5] CANDÈS E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011,58(3): Article No. 11. [6] CANDÈS E J, RECHT B. Exact matrix completion via convex optimization [J]. Foundations of Computational Mathematics, 2009, 9(6):717-772. [7] CANDÈS E J, TAO T. The power of convex relaxation: near-optimal matrix completion[J]. IEEE Transactions on Information Theory, 2010, 56(5):2053-2080. [8] SHI J, ZHENG X, YONG L. Incomplete robust principal component analysis[J]. ICIC Express Letters, Part B: Applications, 2014, 5(6):1531-1538. [9] SHANG F, LIU Y, CHENG J, et al. Robust principal component analysis with missing data[C]//Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2014. [10] LIN Z, CHEN M, WU L, et al. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, UILU-ENG-09-2215[R]. Illinois: University of Illinois at Urbana-Champaign, 2009. [11] CANDÈS E J, PLAN Y. Matrix completion with noise [J]. Proceedings of the IEEE, 2010, 98(6):925-936. [12] TIEMEY S, GAO J, GUO Y. Subspace clustering for sequential data [C]//Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014:1019-1026. [13] SHI J, ZHOU S, ZHENG X. Multilinear robust principal component analysis [J]. Acta Electronica Sinica, 2014, 42(8):1480-1486.(史加荣,周水生,郑秀云. 多线性鲁棒主成分分析[J].电子学报, 2014, 42(8): 1480-1486.) [14] GOLDFARB D, QIN Z. Robust low-rank tensor recovery: models and algorithms [J]. SIAM Journal on Matrix Analysis Applications, 2014, 35(1):225-253. |